Skip to main content
Log in

Java-based graphical user interface for the MRUI quantitation package

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

This article describes the Java-based version of the magnetic resonance user interface (MRUI) quantitation package. This package allows MR spectroscopists to easily perform time-domain analysis of in vivo MR spectroscopy data. We show that the Java programming language is very well suited for developing highly interactive graphical software applications such as the MRUI software. We have also established that MR quantitation algorithms, programmed in other languages, can easily be embedded into the Java-based MRUI by using the Java native interface (JNI). This new graphical user interface (GUI) has been conceived for the processing of large data sets and uses prior knowledge data-bases to make interactive quantitation algorithms more userfriendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The MRUI Home Page. See:http://www.mrui.uub.es/mrui/ mruiHomepage.html.

  2. For all details on the MATLAB software, browse through The Mathworks Web site at:http://www.mathworks.com/.

  3. van den Boogaart A. MRUI manual v96.3. A User’s Guide to the Magnetic Resonance User Interface Software Package, The European Union Human Capital and Mobility Networks Programme, Project Number HCM-CHRX-CT94-0432, Advanced Signal Processing for Medical Magnetic Resonance Imaging and Spectroscopy, ISBN: 90-9010509-3. Delft, 1997.

  4. van den Boogaart A, Cavassila S, Vanhamme L, Totz J, Van Hecke P. A complete software package for MR signal processing. In: Eighteenth Annual International Conference of IEEE Engineering Medical and Biological Society, Amsterdam, 1996.

  5. The Home Page of the European Union project TMR Networks ERB-FMRX-CT97-0160. See:http://azur.univ-lyonl.fr/TMR/ tmr.html.

  6. Arnold K, Gosling J. The Java Programming Language. Reading: Addison Wesley, 1996.

    Google Scholar 

  7. Chan P, Lee R, Kramer D. The Java Class Libraries, vol. 1, second ed. Reading: Addison Wesley, 1998.

    Google Scholar 

  8. Chan P, Lee R. The Java Class Libraries, vol. 2, second ed. Reading: Addison Wesley, 1998.

  9. Flanagan D. Java in a Nutshell. Cambridge: O’Reilly, 1997.

    Google Scholar 

  10. Weiner SR, Asbury S. Programming with JFC. New York: Wiley, 1998.

    Google Scholar 

  11. Gutz S. Up to Speed with Swing. User Interfaces with Java Foundation Classes. Greenwich: Manning, 1998.

    Google Scholar 

  12. Barkhuijsen H, de Beer R, van Ormondt D. Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals. J Magn Reson 1987;73:553–7.

    CAS  Google Scholar 

  13. de Beer R, van Ormondt D. Analysis of NMR data using time domain fitting. In: Diehl P, Fluck E, Gunther H, Kosfeld R, Seeling J, editors. NMR Basic Principles and Progress. Berlin: Springer, 1992:202–48.

    Google Scholar 

  14. Pijnappel WWF, van den Boogaart A, de Beer R, van Ormondt D. SVD-based quantification of magnetic resonance signals. J Magn Reson 1992;97:122–34.

    Google Scholar 

  15. Van Huffel S, Chen H, Decanniere C, Van Hecke P. Algorithm for time-domain NMR data fitting based on total least squares. J Magn Reson Ser A1994;110:228–37.

    Article  Google Scholar 

  16. Barkhuijsen H, de Beer R, Bovée WMMJ, van Ormondt D. Retrieval of frequencies, amplitudes, damping factors and phases from time-domain signals using a linear least-squares procedure. J Magn Reson 1985;61:465–81.

    CAS  Google Scholar 

  17. Diop A, Briguet A, Graveron-Demilly D. Automatic in vivo NMR data processing based on an enhancement procedure and linear prediction method. Magn Reson Med 1992;27:318–28.

    Article  PubMed  CAS  Google Scholar 

  18. Diop A, Zaim-Wadghiri Y, Briguet A, Graveron-Demilly D. Improvements of quantitation by using the Cadzow enhancement procedure prior to any linear prediction method. J Magn Reson Ser B 1994;105:17–24.

    Article  CAS  Google Scholar 

  19. Kolbel W, Schafer H. Improvement and automation of the LPSVD algorithm by continuous regularization of the singular values. J Magn Reson 1992;100:598–603.

    Google Scholar 

  20. Diop A. Kolbel W, Michel D, Briguet A, Graveron-Demilly D. Full automation of in vivo NMR quantification by LPSVD(CR) and EPLPSVD. J Magn Reson Ser B 1994;103:217–21.

    Article  CAS  Google Scholar 

  21. Totz J, van den Boogaart A, Van Huffel S, Graveron-Demilly D. Dologlou I. Heidler R, Michel D. The use of continuous regularization in the automated analysis of MRS time domain data. J Magn Reson 1997;124:400–9.

    Article  CAS  Google Scholar 

  22. Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 1997;129:35–43.

    Article  PubMed  CAS  Google Scholar 

  23. van der Veen JWC, de Beer R. Luvten PR, van Ormondt D. Accurate quantification of in vivo31P-NMR signals using the variable projection method and prior knowledge. Magn Reson Med 1988;6:92–8.

    Article  PubMed  Google Scholar 

  24. van den Boogaart A, van Ormondt D, Pijnappel W. de Beer R. Ala-Korpela M. Removal of the water resonance from1H-magnetic resonance spectra. In: McWhirter JG, editor. Mathematics in Signal Processing III. Oxford: Clarendon Press, 1994:175–95.

    Google Scholar 

  25. Vanhamme L, Fierro RD, Van Huffel S. de Beer R. Fast removal of residual water in proton spectra. J Magn Reson 1998;132:197–203.

    Article  PubMed  CAS  Google Scholar 

  26. Antoine JP. Coron A, Dereppe JM. Water peak suppression: time-frequency versus time-scale approach. J Magn Reson 2000;144:189–94.

    Article  PubMed  CAS  Google Scholar 

  27. Cavassila S, Fenet B, van den Boogaart A, Rémy C, Briguet A, Graveron-Demilly D. ER-Filter: a preprocessing technique for frequency-selective time-domain analysis. Magn Reson Anal 1997;3:87–92.

    Google Scholar 

  28. Barache D. Antoine JP, Dereppe JM. The continuous wavelet transform, an analysis tool for NMR spectroscopy. J Magn Reson 1997;128:1–11.

    Article  CAS  Google Scholar 

  29. Barkhuijsen H. de Beer R, van Ormondt D. Error theory for time-domain signal analysis with linear prediction and singular value decomposition. J Magn Reson 1986;67:371–5.

    Google Scholar 

  30. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-De-milly D. The beneficial influence of prior knowledge on the quantitation of in vivo magnetic resonance spectroscopy signals. Invest Radiol 1999;34:242–6.

    Article  PubMed  CAS  Google Scholar 

  31. Cavassila S. Deval S, Huegen C, van Ormondt D, Graveron-De-milly D. Cramér-Rao bound expressions for parametric estimation of overlapping peaks. Influence of prior knowledge. J Magn Reson 2000;143:311–20.

    Article  PubMed  CAS  Google Scholar 

  32. Sundin T, Vanhamme L, Van Hecke P, Dologlou I, Van Huffei S. Accurate quantification of 1H spectra: from finite impulse response filter design for solvent suppression to parameter estimation. J Magn Rcson 1999; 139:189–204.

    Article  CAS  Google Scholar 

  33. Vanhammc L, Sundin T, Van Hecke P, Van Huffel S, Pintelon R. Frequency-selective quantification of biomedical magnetic resonance spectroscopy data. J Magn Reson 2000; 143:1–16.

    Article  CAS  Google Scholar 

  34. Vanhamme L, Van Huffel S, Van Hecke P, van Ormondt D. Time-domain quantification of series of biomedical magnetic resonance spectroscopy signals. J Magn Reson 1999; 140:120–30.

    Article  PubMed  CAS  Google Scholar 

  35. Graveron-Demilly D, Diop A, Briguet A, Fenet B. Product-operator algebra for strongly coupled spin systems. J Magn Reson Ser A 1993;101:233–9.

    Article  CAS  Google Scholar 

  36. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W. Object-Oriented Modeling and Design. Englewood Cliffs: Prentice Hall, 1991.

    Google Scholar 

  37. Booch G. Object-Oriented Analysis and Design. Redwood City: The Benjamin/Cummings Publishing Company, 1994.

    Google Scholar 

  38. Stroustrup B. The C + + Programming Language, third cd. Reading: Addison Wesley. 1997.

    Google Scholar 

  39. Fowler M. Scott K. UML Distilled. Applying the Standard Object Modeling Language. Reading: Addison Wesley, 1997.

    Google Scholar 

  40. Ambler SW. The Unified Modeling Language v1.l and Beyond: The Techniques of Object-Oriented Modeling. An AmbySoft Inc. White Paper. See:http://www.ambysoft.com/umlAndBeyond.html.

  41. Oaks S, Wong H. Java Threads. Cambridge: O’Reilly, 1997.

    Google Scholar 

  42. Java Native Interface Specification. Sun Microsystems, 1997.

  43. Williams DM, Fencil L, Chenevert TL. Peripheral arterial occlusive disease: P-31 MR spectroscopy of calf muscle. Radiology 1990;175:381–5.

    PubMed  CAS  Google Scholar 

  44. De Beer R, van den Boogaart A, Cady E. Graveron-Demilly D, Knijn A, Langenberger KW, Lindon JC, Ohlhoff A, Serrai H, Wylezinska-Arridge M. Absolute metabolite quantification by in vivo NMR spectroscopy: V. Multicentre quantitative data analysis trial on the overlapping background problem. Magn Reson Imaging 1998; 16:1127–37.

    Article  Google Scholar 

  45. Knijn A, de Beer R, van Ormondt D. Frequency-selective quantification in the time domain. J Magn Reson 1992;97:444–50.

    Google Scholar 

  46. De Beer R, van Ormondt D. Background features in magnetic resonance signals: addressed by SVD-based state space modeling. Appl Magn Reson 1994;6:379 -90.

    Article  Google Scholar 

  47. The Java Development Kit. See:http://java.sun.com/jdk/.

  48. The Together J visual UML modeling tool. See:http:// www.togethersoft.com/.

  49. The GNU Fortran compiler. See:http://egcs.cygnus.com/.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naressi, A., Couturier, C., Devos, J.M. et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA 12, 141–152 (2001). https://doi.org/10.1007/BF02668096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668096

Keywords

Navigation