Skip to main content
Log in

Comparing the prefrontal cortex of rats and primates: Insights from electrophysiology

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

There is a long-standing debate about whether rats have what could be considered a prefrontal cortex (PFC) and, if they do, what its primate homologue is. Anatomical evidence supports the view that the rat medial PFC is related to both the primate anterior cingulate cortex (ACC) and the dorsolateral PFC. Functionally the primate and human ACC are believed to be involved in the monitoring of actions and outcomes to guide decisions especially in challenging situations where cognitive conflict and errors arise. In contrast, the dorsolateral PFC is responsible for the maintenance and manipulation of goal-related items in memory in the service of planning, problem solving, and predicting forthcoming events. Recent multiple single-unit recording studies in rats have reported strong correlates of motor planning, movement and reward anticipation analogous to what has been observed in the primate ACC. There is also emerging evidence that rats may partly encode information over delays using body posture or variations in running path as embodied strategies, and that these are the aspects tracked by medial PFC neurons. The primate PFC may have elaborated on these rudimentary functions by carrying them over to more abstract levels of mental representation, more independent from somatic or other external mnemonic cues, and allowing manipulation of mental contents outside specific task contexts. Therefore, from an electrophysiological and computational perspective, the rat medial PFC seems to combine elements of the primate ACC and dorsolateral PFC at a rudimentary level. In primates, these functions may have formed the building blocks required for abstract rule encoding during the expansion of the cortex dorsolaterally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AksayE, G Gamkrelidze, HS Seung, R Baker and DW Tank (2001)In vivo intracellular recording and perturbation of persistent activity in a neural integrator.Nat. Neurosci. 4, 184–193.

    PubMed  CAS  Google Scholar 

  • Averbeck BB and D Lee (2007) Prefrontal neural correlates of memory for sequences.J. Neurosci. 27, 2204–2211.

    PubMed  CAS  Google Scholar 

  • Averbeck BB, JW Sohn and D Lee (2006) Activity in prefrontal cortex during dynamic selection of action sequences.Nat. Neurosci. 9, 276–282.

    PubMed  CAS  Google Scholar 

  • Baeg EH, YB Kim, K Huh, I Mook-Jung, HT Kim and MW Jung (2003) Dynamics of population code for working memory in the prefrontal cortex.Neuron 40, 177–188.

    PubMed  CAS  Google Scholar 

  • Bailey KR and RG Mair (2004) Dissociable effects of frontal cortical lesions on measures of visuospatial attention and spatial working memory in the rat.Cereb. Cortex 14, 974–985.

    PubMed  CAS  Google Scholar 

  • Baleydier C and F Mauguiere (1980) The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis.Brain 103, 525–554.

    PubMed  CAS  Google Scholar 

  • Batuev AS, NP Kursina and AP Shutov (1990) Unit activity of the medial wall of the frontal cortex during delayed performance in rats.Behav. Brain Res. 41, 95–102.

    PubMed  CAS  Google Scholar 

  • Brito GN and LS Brito (1990) Septohippocampal system and the prelimbic sector of frontal cortex: a neuropsychological battery analysis in the rat.Behav. Brain Res. 36, 127–146.

    PubMed  CAS  Google Scholar 

  • Broersen LM and HB Uylings (1999) Visual attention task performance in Wistar and Lister hooded rats: response inhibition deficits after medial prefrontal cortex lesions.Neuroscience 94, 47–57.

    PubMed  CAS  Google Scholar 

  • Brown VJ and EM Bowman (2002) Rodent models of prefrontal cortical function.Trends Neurosci. 25, 340–343.

    PubMed  CAS  Google Scholar 

  • Burk JA and RG Mair (2001) Effects of intralaminar thalamic lesions on sensory attention and motor intention in the rat: a comparison with lesions involving frontal cortex and hippocampus.Behav. Brain Res. 123, 49–63.

    PubMed  CAS  Google Scholar 

  • Bush G, P Luu and MI Posner (2000) Cognitive and emotional influences in anterior cingulate cortex.Trends Cogn. Sci. 4, 215–222.

    PubMed  Google Scholar 

  • Bussey TJ, JL Muir, BJ Everitt and TW Robbins (1997) Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat.Behav. Neurosci. 111, 920–936.

    PubMed  CAS  Google Scholar 

  • Carter CS, TS Braver, DM Barch, MM Botvinick, D Noll and JD Cohen (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance.Science 280, 747–749.

    PubMed  CAS  Google Scholar 

  • Carter CS, MM Botvinick and JD Cohen (1999) The contribution of the anterior cingulate cortex to executive processes in cognition.Rev. Neurosci. 10, 49–57.

    PubMed  CAS  Google Scholar 

  • Chang JY, L Chen, F Luo, LH Shi and DJ Woodward (2002) Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: ensemble recording in freely moving rats.Exp. Brain Res. 142, 67–80.

    PubMed  Google Scholar 

  • Chorover SL and M Cole (1966) Delayed alternation performance in patients with cerebral lesions.Neuropsychologia 4, 1–7.

    Google Scholar 

  • Chudasama Y and JL Muir (2001) Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei?Behav. Neurosci. 115, 417–428.

    PubMed  CAS  Google Scholar 

  • Chudasama Y and TW Robbins (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.J. Neurosci. 23, 8771–8780.

    PubMed  CAS  Google Scholar 

  • Conde F, E Audinat, E Maire-Lepoivre and F Crepel (1990) Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents.Brain Res. Bull. 24, 341–354.

    PubMed  CAS  Google Scholar 

  • Cowen SL and BL McNaughton (2007) Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency.J. Neurophysiol. 98, 303–316.

    PubMed  Google Scholar 

  • Dalley JW, RN Cardinal and TW Robbins (2004) Prefrontal executive and cognitive functions in rodents, neural and neurochemical substrates.Neurosci. Biobehav. Rev. 28, 771–784.

    PubMed  CAS  Google Scholar 

  • Deiber MP, RE Passingham, JG Colebatch, KJ Friston, PD Nixon and RS Frackowiak (1991) Cortical areas and the selection of movement: a study with positron emission tomography.Exp. Brain Res. 84, 393–402.

    PubMed  CAS  Google Scholar 

  • Deltour B and P Gisquet-Verrier (1996) Prelimbic cortex specific lesions disrupt delayed-variable response tasks in the rat.Behav. Neurosci. 110, 1282–1298.

    Google Scholar 

  • Delatour B and P Gisquet-Verrier (2001) Involvement of the dorsal anterior cingulate cortex in temporal behavioral sequencing: subregional analysis of the medial prefrontal cortex in rat.Behav. Brain Res. 126, 105–114.

    PubMed  CAS  Google Scholar 

  • Devinsky O, MJ Morrell and BA Vogt (1995) Contributions of anterior cingulate cortex to behaviour.Brain 118 (Pt. 1), 279–306.

    PubMed  Google Scholar 

  • Dias R and JP Aggleton (2000) Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching- and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility.Eur. J. Neurosci. 12, 4457–4466.

    PubMed  CAS  Google Scholar 

  • Doar B, S Finger and CR Almli (1987) Tactile-visual acquisition and reversal learning deficits in rats with prefrontal cortical lesions.Exp. Brain Res. 66, 432–434.

    PubMed  CAS  Google Scholar 

  • Duncan, J (2001) An adaptive coding model of neural function in prefrontal cortex.Nat. Rev. Neurosci. 2, 820–829.

    PubMed  CAS  Google Scholar 

  • Dunnett SB (1990) Role of prefrontal cortex and striatal output systems in short-term memory deficits associated with ageing, basal forebrain lesions, and cholinergic-rich grafts.Can. J. Psychol. 44, 210–232.

    PubMed  CAS  Google Scholar 

  • Durstewitz D (2004) Neural representation of interval time.Neuroreport 15, 745–749.

    PubMed  Google Scholar 

  • Durstewitz D, JK Seamans and TJ Sejnowski (2000) Dopaminemediated stabilization of delay-period activity in a network model of prefrontal cortex.J. Neurophysiol. 83, 1733–1750.

    PubMed  CAS  Google Scholar 

  • Durstewitz D and JK Seamans (2006) Beyond bistability: biophysics and temporal dynamics of working memory.Neuroscience 139, 119–133.

    PubMed  CAS  Google Scholar 

  • Euston DR and BL McNaughton (2006) Apparent encoding of sequential context in rat medial prefrontal cortex is accounted for by behavioral variability.J. Neurosci. 26, 13143–13155.

    PubMed  CAS  Google Scholar 

  • Frankle WG, M Laruelle and SN Haber (2006) Prefrontal cortical projections to the midbrain in primates: evidence for a sparse connection.Neuropsychopharmacology 31, 1627–1636.

    PubMed  CAS  Google Scholar 

  • Freedman DJ, M Riesenhuber, T Poggio and EK Miller (2001) Categorical representation of visual stimuli in the primate prefrontal cortex.Science 291, 312–316.

    PubMed  CAS  Google Scholar 

  • Freeman JH Jr and ME Stanton (1992) Medial prefrontal cortex lesions and spatial delayed alternation in the developing rat: recovery or sparing?Behav. Neurosci. 106, 924–932.

    PubMed  Google Scholar 

  • Frith CD, K Friston, PF Liddle and RS Frackowiak (1991) Willed action and the prefrontal cortex in man: a study with PET.Proc. Biol. Sci. 244, 241–246.

    PubMed  CAS  Google Scholar 

  • Funahashi S and K Kubota (1994) Working memory and prefrontal cortex.Neurosci. Res. 21, 1–11.

    PubMed  CAS  Google Scholar 

  • Funahashi S, CJ Bruce and PS Goldman-Rakic (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex.J. Neurophysiol. 61, 331–349.

    PubMed  CAS  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory.J. Neurophysiol. 36, 61–78.

    PubMed  CAS  Google Scholar 

  • Fuster JM (1997) Network memory.Trends Neurosci. 20, 451–459.

    PubMed  CAS  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex--an update: time is of the essence.Neuron 30, 319–333.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex.Annu. Rev. Neurosci. 11, 137–156.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory.Neuron 14, 477–485.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Burgos G, S Kroener and JK Seamans (2007) Cellular mechanisms of dopamine modulation of prefrontal neurons and networks, In:Monoaminergic Modulation of Cortical Excitability (Tseng K and M Atzori, Eds.) (Springer:New York, NY).

    Google Scholar 

  • Granon S, C Vidal, C Thinus-Blanc, JP Changeux and B Poucet (1994) Working memory, response selection, and effortful processing in rats with medial prefrontal lesions.Behav. Neurosci. 108, 883–891.

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, HW Berendse, JG Wolters and AH Lohman (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization.Prog. Brain Res. 85, 95–116; 116–118.

    PubMed  CAS  Google Scholar 

  • Hebb D (1977) The frontal lobe.CMA Journal 116, 1373–1374.

    CAS  Google Scholar 

  • Hebb DO (1939) Intelligence in man after large removals of cerebral tissue: report of four left frontal lobe cases.J. Gen. Psychol. 21, 73–87.

    Google Scholar 

  • Hebb DO (1945) Man’s frontal lobes: a critical review.Arch. Neurol. Psychiatry 54, 10–24.

    Google Scholar 

  • Heidbreder CA and HJ Groenewegen (2003) The edial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics.Neurosci. Biobehav. Rev. 27, 555–579.

    PubMed  Google Scholar 

  • Isomura Y, Y Ito, T Akazawa, A Nambu and M Takada (2003) Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex.J. Neurosci. 23, 8002–8012.

    PubMed  CAS  Google Scholar 

  • Ito S, V Stuphorn, JW Brown and JD Schall (2003) Performance monitoring by the anterior cingulate cortex during saccade countermanding.Science 302, 120–122.

    PubMed  CAS  Google Scholar 

  • Joel D, I Weiner and J Feldon (1997) Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia.Behav. Brain Res. 85, 187–201.

    PubMed  CAS  Google Scholar 

  • Jung MW, Y Qin, BL McNaughton and CA Barnes (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks.Cereb. Cortex 8, 437–450.

    PubMed  CAS  Google Scholar 

  • Jung MW, Y Qin, D Lee and I Mook-Jung (2000) Relationship among discharges of neighboring neurons in the rat prefrontal cortex during spatial working memory tasks.J. Neurosci. 20, 6166–6172.

    PubMed  CAS  Google Scholar 

  • Kennerley SW, ME Walton, TE Behrens, MJ Buckley and MF Rushworth (2006) Optimal decision making and the anterior cingulate cortex.Nat. Neurosci. 9, 940–947.

    PubMed  CAS  Google Scholar 

  • Kesner RP (1989) Retrospective and prospective coding of information: role of the medial prefrontal cortex.Exp. Brain Res. 74, 163–167.

    PubMed  CAS  Google Scholar 

  • Kesner RP, ME Hunt, JM Williams and JM Long (1996) Prefrontal cortex and working memory for spatial response, spatial location, and visual object information in the rat.Cereb. Cortex 6, 311–318.

    PubMed  CAS  Google Scholar 

  • Kinoshita S, C Yokoyama, D Masaki, T Yamashita, H Tsuchida, Y Nakatomi and K Fukui (2008) Effects of rat medial prefrontal cortex lesions on olfactory serial reversal and delayed alternation tasks.Neurosci. Res. 60, 213–218.

    PubMed  Google Scholar 

  • Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review.Brain Res. 320, 65–98.

    PubMed  CAS  Google Scholar 

  • Lapish C, D Durstewitz, LJ Chandler and JK Seamans (2008) Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex.Proc. Natl. Acad. Sci. USA 105(33), 11963–11968. Epub 2008 Aug15.

    PubMed  CAS  Google Scholar 

  • Magno E, JJ Foxe, S Molholm, IH Robertson and H Garavan (2006) The anterior cingulate and error avoidance.J. Neurosci. 26, 4769–4773.

    PubMed  CAS  Google Scholar 

  • Manes F, B Sahakian, L Clark, R Rogers, N Antoun, M Aitken and T Robbins (2002) Decision-making processes following damage to the prefrontal cortex.Brain 125, 624–639.

    PubMed  Google Scholar 

  • Matsumoto K, W Suzuki and K Tanaka (2003) Neuronal correlates of goal-based motor selection in the prefrontal cortex.Science 301, 229–232.

    PubMed  CAS  Google Scholar 

  • Matsumoto M, K Matsumoto, H Abe and K Tanaka (2007) Medial prefrontal cell activity signaling prediction errors of action values.Nat. Neurosci. 10, 647–656.

    PubMed  CAS  Google Scholar 

  • McNab F and T Klingberg (2008) Prefrontal cortex and basal ganglia control access to working memory.Nat. Neurosci. 11, 103–107.

    PubMed  CAS  Google Scholar 

  • Miller EK and JD Cohen (2001) An integrative theory of prefrontal cortex function.Annu. Rev. Neurosci. 24, 167–202.

    PubMed  CAS  Google Scholar 

  • Miller EK and R Desimone (1994) Parallel neuronal mechanisms for short-term memory.Science 263, 520–522.

    PubMed  CAS  Google Scholar 

  • Miller EK, CA Erickson and R Desimone (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque.J. Neurosci. 16, 5154–5167.

    PubMed  CAS  Google Scholar 

  • Milner B and M Petrides (1984) Behavioral effects of frontallobe lesions in man.Trends Neurosci. 7, 403–407

    Google Scholar 

  • Muir JL, BJ Everitt and TW Robbins (1996) The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task.Cereb. Cortex 6, 470–481.

    PubMed  CAS  Google Scholar 

  • Niki H and M Watanabe (1976) Cingulate unit activity and delayed response.Brain Res. 110, 381–386.

    PubMed  CAS  Google Scholar 

  • Niki H and M Watanabe (1979) Prefrontal and cingulate unit activity during timing behavior in the monkey.Brain Res. 171, 213–224.

    PubMed  CAS  Google Scholar 

  • Oliveira FT, JJ McDonald and D Goodman (2007) Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations.J. Cogn. Neurosci. 19(12), 1994–2004.

    PubMed  Google Scholar 

  • Ongur D and JL Price (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.Cereb. Cortex 10, 206–219.

    PubMed  CAS  Google Scholar 

  • Owen AM, JJ Downes, BJ Sahakian, CE Polkey and TW Robbins (1990) Planning and spatial working memory following frontal lobe lesions in man.Neuropsychologia 28, 1021–1034.

    PubMed  CAS  Google Scholar 

  • Owen AM, BJ Sahakian, J Semple, CE Polkey and TW Robbins (1995) Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man.Neuropsychologia 33, 1–24.

    PubMed  CAS  Google Scholar 

  • Pandya DN and EH Yeterian (1990) Prefrontal cortex in relation to other cortical areas in rhesus monkey: architecture and connections.Prog. Brain Res. 85, 63–94.

    PubMed  CAS  Google Scholar 

  • Paus T, M Petrides, AC Evans and E Meyer (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study.J. Neurophysiol. 70, 453–469.

    PubMed  CAS  Google Scholar 

  • Petersen SE, PT Fox, MI Posner, M Mintun and ME Raichle (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing.Nature 331, 585–589.

    PubMed  CAS  Google Scholar 

  • Petit L, SM Courtney, LG Ungerleider and JV Haxby (1998) Sustained activity in the medial wall during working memory delays.J. Neurosci. 18, 9429–9437.

    PubMed  CAS  Google Scholar 

  • Petrides M (1989) Frontal lobes and memory, In:Handbook of Neuropsychology, vol. 3 (Boller F & J Graffman) (Elsevier: Amsterdam), pp 75–90.

    Google Scholar 

  • Petrides M (1996) Specialized systems for the processing of mnemonic information within the primate frontal cortex.Philos. Trans. R Soc. Lond. B Biol. Sci. 351, 1455–1461; discussion 1461–1462.

    PubMed  CAS  Google Scholar 

  • Picard N and PL Strick (1996) Motor areas of the medial wall: a review of their location and functional activation.Cereb. Cortex 6, 342–353.

    PubMed  CAS  Google Scholar 

  • Posner MI and SE Petersen (1990) The attention system of the human brain.Annu. Rev. Neurosci. 13, 25–42.

    PubMed  CAS  Google Scholar 

  • Pratt WE and SJ Mizumori (2001) Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task.Behav. Brain Res. 123, 165–183.

    PubMed  CAS  Google Scholar 

  • Pribram KH and WE Tubbs (1967) Short-term memory, parsing, and the primate frontal cortex.Science 156, 1765–1767.

    PubMed  CAS  Google Scholar 

  • Procyk E and PS Goldman-Rakic (2006) Modulation of dorsolateral prefrontal delay activity during self-organized behavior.J. Neurosci. 26, 11313–11323.

    PubMed  CAS  Google Scholar 

  • Quintana J and JM Fuster (1992) Mnemonic and predictive functions of cortical neurons in a memory task.Neuroreport 3, 721–724.

    PubMed  CAS  Google Scholar 

  • Ragozzino ME and RP Kesner (2001) The role of rat dorsomedial prefrontal cortex in working memory for egocentric responses.Neurosci. Lett. 308, 145–148.

    PubMed  CAS  Google Scholar 

  • Ragozzino ME, S Adams and RP Kesner (1998) Differential involvement of the dorsal anterior cingulate and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory.Behav. Neurosci. 112, 293–303.

    PubMed  CAS  Google Scholar 

  • Ragozzino ME, C Wilcox, M Raso and RP Kesner (1999) Involvement of rodent prefrontal cortex subregions in strategy switching.Behav. Neurosci. 113, 32–41.

    PubMed  CAS  Google Scholar 

  • Rainer G and EK Miller (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task.Eur. J. Neurosci. 15, 1244–1254.

    PubMed  Google Scholar 

  • Rainer G, WF Asaad and EK Miller (1998) Selective representation of relevant information by neurons in the primate prefrontal cortex.Nature 393, 577–579.

    PubMed  CAS  Google Scholar 

  • Rainer G, SC Rao and EK Miller (1999) Prospective coding for objects in primate prefrontal cortex.J. Neurosci. 19, 5493–5505.

    PubMed  CAS  Google Scholar 

  • Rao SC, G Rainer and EK Miller (1997) Integration of what and where in the primate prefrontal cortex.Science 276, 821–824.

    PubMed  CAS  Google Scholar 

  • Rich EL and ML Shapiro (2007) Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks.J. Neurosci. 27, 4747–4755.

    PubMed  CAS  Google Scholar 

  • Risterucci C, D Terramorsi, A Nieoullon and M Amalric (2003) Excitotoxic lesions of the prelimbic-infralimbic areas of the rodent prefrontal cortex disrupt motor preparatory processes.Eur. J. Neurosci. 17, 1498–1508.

    PubMed  Google Scholar 

  • Robbins TW (1996) Dissociating executive functions of the prefrontal cortex.Philos. Trans. R Soc. Lond. B Biol. Sci. 351, 1463–1470.

    PubMed  CAS  Google Scholar 

  • Rogers DC, PW Wright, JC Roberts, C Reavill, AL Rothaul and AJ Hunter (1992) Photothrombotic lesions of the frontal cortex impair the performance of the delayed non-matching to position task by rats.Behav. Brain Res. 49, 231–235.

    PubMed  CAS  Google Scholar 

  • Rushworth MF, KA Hadland, D Gaffan and RE Passingham (2003) The effect of cingulate cortex lesions on task switching and working memory.J. Cogn. Neurosci. 15, 338–353.

    PubMed  CAS  Google Scholar 

  • Rushworth MF, ME Walton, S WKennerley and DM Bannerman (2004) Action sets and decisions in the medial frontal cortex.Trends Cogn. Sci. 8, 410–417.

    PubMed  CAS  Google Scholar 

  • Rushworth MF, TE Behrens, PH Rudebeck and ME Walton (2007) Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour.Trends Cogn. Sci. 11, 168–176.

    PubMed  CAS  Google Scholar 

  • Sakurai Y and S Sugimoto (1985) Effects of lesions of prefrontal cortex and dorsomedial thalamus on delayed go/no-go alternation in rats.Behav. Brain Res. 17, 213–219.

    PubMed  CAS  Google Scholar 

  • Salazar RF, W White, L Lacroix, J Feldon and IM White (2004) NMDA lesions in the medial prefrontal cortex impair the ability to inhibit responses during reversal of a simple spatial discrimination.Behav. Brain Res. 152, 413–424.

    PubMed  Google Scholar 

  • Schall JD, V Stuphorn and JW Brown (2002) Monitoring and control of action by the frontal lobes.Neuron 36, 309–322.

    PubMed  CAS  Google Scholar 

  • Seamans JK, SB Floresco and AG Phillips (1995) Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex.Behav. Neurosci. 109, 1063–1073.

    PubMed  CAS  Google Scholar 

  • Shafi M, Y Zhou, J Quintana, C Chow, J Fuster and M Bodner (2007) Variability in neuronal activity in primate cortex during working memory tasks.Neuroscience 146, 1082–1108.

    PubMed  CAS  Google Scholar 

  • Shallice T (1982) Specific impairments of planning.Philos. Trans. Royal Soc. Lond. B Biol. Sci. 298, 199–209.

    CAS  Google Scholar 

  • Shallice T and P Burgess (1996) The domain of supervisory processes and temporal organization of behaviour.Phil. Trans. Royal Soc. Lond. 351, 1405–1411.

    CAS  Google Scholar 

  • Shallice T, PW Burgess, F Schon and DM Baxter (1989) The origins of utilization behaviour.Brain 112 (Pt. 6), 1587–1598.

    PubMed  Google Scholar 

  • Shima K and J Tanji (1998) Role for cingulate motor area cells in voluntary movement selection based on reward.Science 282, 1335–1338.

    PubMed  CAS  Google Scholar 

  • Shima K, K Aya, H Mushiake, M Inase, H Aizawa and J Tanji (1991) Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements.J. Neurophysiol. 65, 188–202.

    PubMed  CAS  Google Scholar 

  • Sloan HL, M Good and SB Dunnett (2006) Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task.Behav. Brain Res. 171, 116–126.

    PubMed  Google Scholar 

  • Smith JS, LG Kiloh and JA Bots (1977) Prospective evaluation of prefrontal leucotomy: results of 30 months’ follow-up, In:Neurosurgical Treatment in Psychiatry, Pain and Epilepsy (Sweet WH, S Obrador & JG Martin-Rodriguez, Eds.) (University Park Press:Baltimore, MD).

    Google Scholar 

  • Stuss DT, EF Kaplan, DF Benson, WS Weir, S Chiulli and FF Sarazin (1982) Evidence for the involvement of orbitofrontal cortex in memory functions: an interference effect.J. Comp. Physiol. Psychol. 96, 913–925.

    PubMed  CAS  Google Scholar 

  • Stuss DT, DF Benson, R Clermont, CL Della Malva, EF Kaplan and WS Weir (1986) Language functioning after bilateral prefrontal leukotomy.Brain Lang. 28, 66–70.

    PubMed  CAS  Google Scholar 

  • Super H, H Spekreijse and VA Lamme (2001) A neural correlate of working memory in the monkey primary visual cortex.Science 293, 120–124.

    PubMed  CAS  Google Scholar 

  • Taylor CL, MP Latimer and P Winn (2003) Impaired delayed spatial win-shift behaviour on the eight arm radial maze following excitotoxic lesions of the medial prefrontal cortex in the rat.Behav. Brain Res. 147, 107–114.

    PubMed  Google Scholar 

  • Unterrainer JM and AM Owen (2006) Planning and problem solving: from neuropsychology to functional neuroimaging.J. Physiol. (Paris) 99, 308–317.

    Google Scholar 

  • Uylings HB and CG van Eden (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans.Prog. Brain Res. 85, 31–62.

    PubMed  CAS  Google Scholar 

  • Uylings HB, HJ Groenewegen and B Kolb (2003) Do rats have a prefrontal cortex?Behav. Brain Res. 146, 3–17.

    PubMed  Google Scholar 

  • van Haaren F, G van Zijderveld, A van Hest, JP de Bruin, CG van Eden and NE van de Poll (1988) Acquisition of conditional associations and operant delayed spatial response alternation: effects of lesions in the medial prefrontal cortex.Behav. Neurosci. 102, 481–488.

    PubMed  Google Scholar 

  • van Veen V and CS Carter (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies.Physiol. Behav. 77, 477–482.

    PubMed  Google Scholar 

  • Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens.J. Comp. Neurol. 442, 163–187.

    PubMed  Google Scholar 

  • Wallis JD, KC Anderson and EK Miller (2001) Single neurons in prefrontal cortex encode abstract rules.Nature 411, 953–956.

    PubMed  CAS  Google Scholar 

  • Walton ME, PL Croxson, TE Behrens, SW Kennerley and MF Rushworth (2007) Adaptive decision making and value in the anterior cingulate cortex.Neuroimage 36 Suppl. 2, T142-T154.

    PubMed  Google Scholar 

  • Watanabe M (1996) Reward expectancy in primate prefrontal neurons.Nature 382, 629–32.

    PubMed  CAS  Google Scholar 

  • White IM and SP Wise (1999) Rule-dependent neuronal activity in the prefrontal cortex.Exp. Brain Res. 126, 315–335.

    PubMed  CAS  Google Scholar 

  • Wikmark RG, I Divac and R Weiss (1973) Retention of spatial delayed alternation in rats with lesions in the frontal lobes. Implications for a comparative neuropsychology of the prefrontal system.Brain Behav. Evol. 8, 329–339.

    PubMed  CAS  Google Scholar 

  • Williams SM and PS Goldman-Rakic (1998) Widespread origin of the primate mesofrontal dopamine system.Cereb. Cortex 8, 321–345.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy K Seamans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seamans, J.K., Lapish, C.C. & Durstewitz, D. Comparing the prefrontal cortex of rats and primates: Insights from electrophysiology. neurotox res 14, 249–262 (2008). https://doi.org/10.1007/BF03033814

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033814

Keywords

Navigation