Skip to main content
Log in

Prächirurgische funktionelle Magnetresonanztomographie

Presurgical functional magnetic resonance imaging

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die funktionelle Magnetresonanztomographie (fMRT) ist eine neue, wichtige Modalität der neuroradiologischen Bildgebung bei Patienten mit Hirntumoren. Durch die nichtinvasive Messung, Lokalisation und Lateralisation wichtiger Hirnfunktionen wie Motorik oder Sprache werden die Auswahl einer schonenden Therapie und ein funktionserhaltendes Operieren möglich. Voraussetzungen sind die Verwendung klinisch erprobter Untersuchungsprotokolle und eine technisch-methodische Standardisierung. Sinnvoll sind die Kombination der fMRT mit anderen Modalitäten der modernen MR-Bildgebung, besonders dem „diffusion tensor imaging“ (DTI) zur Darstellung wichtiger Faserverbindungen, und die Implementierung dieser multimodalen MR-Bilddaten in Neuronavigatoren oder Bestrahlungssysteme. Wegen fehlender Empfehlungen und Richtlinien medizinischer Fachgesellschaften und fehlender Zulassung wichtiger Hard- und Softwarekomponenten ist die fMRT in der klinischen Diagnostik noch nicht abschließend etabliert. Die klinische Anwendbarkeit und die Zuverlässigkeit der Methode sind aber durch zahlreiche Studien ausreichend belegt. Dieser Beitrag fasst daher den gegenwärtigen Wissensstand zusammen und gibt praktische Information zur Durchführung der prächirurgischen fMRT.

Abstract

Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Duffau H (2006) New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity – a review. J Neurooncol 79(1):77–115

    Article  PubMed  Google Scholar 

  2. Stippich C (2007) Presurgical functional MRI in patients with brain tumors. In: Stippich C (ed) Clinical functional MRI: presurgical functional neuroimaging. Springer, Berlin Heidelberg New York

  3. Krings T, Reinges MH et al (2001) Functional and diffusion-weighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts. J Neurosurg 95(5):816–824

    Article  CAS  PubMed  Google Scholar 

  4. Detre JA, Leigh JS et al (1992) Perfusion imaging. Magn Reson Med 23(1):37–45

    Article  CAS  PubMed  Google Scholar 

  5. Weber MA, Zoubaa M et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906

    Article  CAS  PubMed  Google Scholar 

  6. Nimsky C, Ganslandt O et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28(5):482–487

    Article  PubMed  Google Scholar 

  7. Naidich TP, Hof PR et al (2001) The motor cortex: anatomic substrates of function. Neuroimaging Clin North Am 11(2):171–193, vii–viii

    CAS  Google Scholar 

  8. Naidich TP, Hof PR et al (2001) Anatomic substrates of language: emphasizing speech. Neuroimaging Clin North Am 11(2):305–341, ix

    CAS  Google Scholar 

  9. Yousry I, Naidich TP et al (2001) Functional magnetic resonance imaging: factors modulating the cortical activation pattern of the motor system. Neuroimaging Clin North Am 11(2):195–202, viii

    CAS  Google Scholar 

  10. Thomas B et al (2007) Brain plasticity in fMRI. In: Stippich C (ed) Clinical functional MRI: presurgical functional neuroimaging. Springer, Berlin Heidelberg New York, pp 209–229

  11. Yousry TA, Schmid UD et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157

    Article  PubMed  Google Scholar 

  12. Fesl G, Moriggl B et al (2003) Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 20(1):601–610

    Article  CAS  PubMed  Google Scholar 

  13. Ojemann G, Ojemann J et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326

    Article  CAS  PubMed  Google Scholar 

  14. Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197(Pt 3):335–359

    Article  PubMed  Google Scholar 

  15. Szaflarski JP, Binder JR et al (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59(2):238–244

    CAS  PubMed  Google Scholar 

  16. Hernandez AE, Dapretto M et al (2001) Language switching and language representation in Spanish-English bilinguals: an fMRI study. Neuroimage 14(2):510–520

    Article  CAS  PubMed  Google Scholar 

  17. Schlaggar BL, Brown TT et al (2002) Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science 296(5572):1476–1479

    Article  CAS  PubMed  Google Scholar 

  18. Shaywitz BA, Shaywitz SE et al (1995) Sex differences in the functional organization of the brain for language. Nature 373(6515):607–609

    Article  CAS  PubMed  Google Scholar 

  19. Penfield WBE (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  20. Woolsey CN, Erickson TC et al (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51(4):476–506

    Article  CAS  PubMed  Google Scholar 

  21. Jack CR Jr, Thompson RM et al (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190(1):85–92

    PubMed  Google Scholar 

  22. Morris GL 3rd, Mueller WM et al (1994) Functional magnetic resonance imaging in partial epilepsy. Epilepsia 35(6):1194–1198

    Article  PubMed  Google Scholar 

  23. Desmond JE, Sum JM et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118( Pt 6):1411–1419

    Article  PubMed  Google Scholar 

  24. FitzGerald DB, Cosgrove GR et al (1997) Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol 18(8):1529–1539

    CAS  PubMed  Google Scholar 

  25. Lehericy S, Duffau H et al (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92(4):589–598

    Article  CAS  PubMed  Google Scholar 

  26. Binder JR, Rao SM et al (1995) Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol 52(6):593–601

    CAS  PubMed  Google Scholar 

  27. Rutten GJ, Ramsey NF et al (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51(3):350–360

    Article  CAS  PubMed  Google Scholar 

  28. Detre JA, Maccotta L et al (1998) Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology 50(4):926–932

    CAS  PubMed  Google Scholar 

  29. Krakow K, Allen PJ et al (2000) Methodology: EEG-correlated fMRI. Adv Neurol 83:187–201

    CAS  PubMed  Google Scholar 

  30. Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. Experimental and clinical observations. J Neurosurg 17:266–282

    Article  Google Scholar 

  31. Pirotte B, Voordecker P et al (2005) Combination of functional magnetic resonance imaging-guided neuronavigation and intraoperative cortical brain mapping improves targeting of motor cortex stimulation in neuropathic pain. Neurosurgery 56 [suppl 2]:344–359; discussion 344–359

  32. Ogawa S, Lee TM et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed  Google Scholar 

  33. Logothetis NK, Pauls J et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  34. Stippich C, Ochmann H et al (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331(1):50–54

    Article  CAS  PubMed  Google Scholar 

  35. Stippich C, Hofmann R et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277(1):25–28

    Article  CAS  PubMed  Google Scholar 

  36. Stippich C, Kapfer D et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett 285(2):155–159

    Article  CAS  PubMed  Google Scholar 

  37. Majos A, Tybor K et al (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15(6):1148–1158

    Article  PubMed  Google Scholar 

  38. Krings T, Reinges MH et al (2001) Functional MRI for presurgical planning: problems, artefacts and solution strategies. J Neurol Neurosurg Psychiatry 70(6):749–760

    Article  CAS  PubMed  Google Scholar 

  39. Hirsch J, Ruge MI et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language and visual functions. Neurosurgery 47(3):711–721; discussion 721–722

    Article  CAS  PubMed  Google Scholar 

  40. Atlas SW, Howard RS 2nd et al (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38(2):329–338

    Article  CAS  PubMed  Google Scholar 

  41. Carpentier AC, Constable RT et al (2001) Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. J Neurosurg 94(6):946–954

    Article  CAS  PubMed  Google Scholar 

  42. Ludemann L, Forschler A et al (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23(4):435–443

    Article  PubMed  Google Scholar 

  43. Holodny AI, Schulder M et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422

    CAS  PubMed  Google Scholar 

  44. Kim MJ, Holodny AI et al (2005) The effect of prior surgery on blood oxygen level-dependent functional MR imaging in the preoperative assessment of brain tumors. AJNR Am J Neuroradiol 26(8):1980–1985

    PubMed  Google Scholar 

  45. Zentner J, Hufnagel A et al (1996) Functional results after resective procedures involving the supplementary motor area. J Neurosurg 85(4):542–549

    Article  CAS  PubMed  Google Scholar 

  46. Baudendistel K, Schad LR et al (1996) Monitoring of task performance during functional magnetic resonance imaging of sensorimotor cortex at 1.5 T. Magn Reson Imaging 14(1):51–58

    Article  CAS  PubMed  Google Scholar 

  47. Hoeller M, Krings T et al (2002) Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien) 144(3):279–284; discussion 284

    Google Scholar 

  48. Kurth R, Villringer K et al (1998) fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9(2):207–212

    Article  CAS  PubMed  Google Scholar 

  49. Stippich C, Romanowski A et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364(2):90–93

    Article  CAS  PubMed  Google Scholar 

  50. Stippich C, Romanowski A et al (2005) Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging. Neurosci Lett 381(3):264–268

    Article  CAS  PubMed  Google Scholar 

  51. Golaszewski SM, Zschiegner F et al (2002) A new pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex. Neurosci Lett 324(2):125–128

    Article  CAS  PubMed  Google Scholar 

  52. Stippich C, Rapps N, Dreyhaupt J et al (2007) Feasibility of routine preoperative functional magnetic resonance imaging for localizing and lateralizing language in 81 consecutive patients with brain tumors. Radiology 243:828–836

    Article  PubMed  Google Scholar 

  53. Ramsey NF, Sommer IE et al (2001) Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage 13(4):719–733

    Article  CAS  PubMed  Google Scholar 

  54. Baxendale S (2002) The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review. J Clin Exp Neuropsychol 24(5):664–676

    Article  PubMed  Google Scholar 

  55. Stippich C, Mohammed J et al (2003) Robust localization and lateralization of human language function: an optimized clinical functional magnetic resonance imaging protocol. Neurosci Lett 346(1–2):109–113

    Google Scholar 

  56. Kober H, Nimsky C et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228

    Article  CAS  PubMed  Google Scholar 

  57. Hajnal JV, Myers R et al (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31(3):283–291

    Article  CAS  PubMed  Google Scholar 

  58. Hoeller M, Krings T et al (2002) Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien) 144(3):279–284; discussion 284

    Google Scholar 

  59. Krings T, Erberich SG et al (1999) MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. AJNR Am J Neuroradiol 20(10):1907–1914

    CAS  PubMed  Google Scholar 

  60. Krings T, Reinges MH et al (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70(6):749–760

    Article  CAS  PubMed  Google Scholar 

  61. Hou BL, Bradbury M et al (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 32(2):489–497

    Article  PubMed  Google Scholar 

  62. Weiskopf N, Klose U et al (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24(4):1068–1079

    Article  PubMed  Google Scholar 

  63. Wittek A, Kikinis R et al (2005) Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv 8(Pt 2):583–590

    Article  PubMed  Google Scholar 

  64. Stippich C (2007) Presurgical functional magnetic resonance imaging. Clin Neuroradiol 17:69–87

    Article  Google Scholar 

  65. Stippich C (2005) Clinical functional magnetic resonance imaging: basic principles and clinical applications. Radiologie up 2 date 5:317–336

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stippich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stippich, C. Prächirurgische funktionelle Magnetresonanztomographie. Radiologe 50, 110–122 (2010). https://doi.org/10.1007/s00117-009-1893-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-009-1893-0

Schlüsselwörter

Keywords

Navigation