Skip to main content

Advertisement

Log in

Is haemosiderin visible indefinitely on gradient-echo MRI following traumatic intracerebral haemorrhage?

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Gradient-echo (GE) MRI has been demonstrated to be the most sensitive current technique for detection of intracerebral haemosiderin, especially in the chronic stage of haemorrhage. Our purpose was to see whether GE MRI shows old haemorrhage indefinitely. We reviewed serial GE images of 105 adults with imaging features consistent with post-traumatic intracerebral haemorrhage, who had serial MRI at 1, 4–6, 12, and 24 months after trauma. Of 1235 scattered low-signal foci consistent with isolated intracerebral haemosiderin deposits on images at 4–6 months, 248 (20.1%) were not seen at 24-month assessment. Reviewing individual patients, we saw that in 71.8% of those with scattered haemosiderin deposits and 46.4% of those with haemosiderin surrounded by gliosis, the low-signal foci appeared less conspicuous with time. Even given certain limitations to the interpretation of these findings, it would appear that, even with the use of GE MRI, time affects the visibility of haemorrhagic intracerebral lesions. We therefore conclude that a time of 4–6 months to 1 year or slightly more should be recommended for most precise detection of haemosiderin deposits on MRI of head-injured patients, should this be thought desirable. Normal GE images may not exclude old haemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT (1985) Intracranial hematomas: imaging by high-field MR. Radiology 157: 87–93

    CAS  PubMed  Google Scholar 

  2. Zimmermann RA, Bilaniuk LT, Hackney DB, Goldberg HI, Grossman RI (1986) Head injury: early results of comparing CT and high-field MR. AJNR 7: 757–764

    Google Scholar 

  3. Hesselink JR, Dowd CF, Healy ME, Hajek P, Baker LL, Luerssen TG (1988) MR imaging of brain contusions: a comparative study with CT. AJNR 9: 269–278

    Google Scholar 

  4. Bradley WG Jr (1993) MR appearance of hemorrhage in the brain. Radiology 189: 15–26

    PubMed  Google Scholar 

  5. Wardlaw JM, Statham PFX (2000) How often is haemosiderin not visible on routine MRI following traumatic intracerebral haemorrhage? Neuroradiology 42: 81–84

    CAS  PubMed  Google Scholar 

  6. Atlas SW, Mark AS, Grossman RI, Gomori JM (1988) Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T: comparison with spin-echo imaging and clinical applications. Radiology 168: 803–807

    CAS  PubMed  Google Scholar 

  7. Unger EC, Cohen MS, Brown TR (1989) Gradient-echo imaging of hemorrhage at 1.5 Tesla. Magn Reson Imaging 7: 163–172

    CAS  PubMed  Google Scholar 

  8. Gentry LR (1994) Imaging of closed head injury. Radiology 191: 1-17

    CAS  PubMed  Google Scholar 

  9. Mittl RL, Grossman RI, Hiehle JF, Hurst RW, Gennarelli TA, Alburger GW (1994) Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR 15: 1583–1589

    CAS  Google Scholar 

  10. Patel MR, Edelman RR, Warach S (1996) Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 27: 2321–2324

    CAS  PubMed  Google Scholar 

  11. Pellicano G, Beccani D, Cellerini M, Nistri M, Dal Pozzo G (1997) MRI evaluation of complications and long term sequelae of cranial trauma. Neuroradiology 39: S82

    Google Scholar 

  12. Parizel PM, Özsarlak Ö, van Goethem JW, et al (1998) Imaging findings in diffuse axonal injury after closed head trauma. Eur Radiol 8: 960–965

    Article  CAS  PubMed  Google Scholar 

  13. Bešenski N (2002) Traumatic injuries: imaging of head injuries. Eur Radiol 12: 1237–1252

    Article  PubMed  Google Scholar 

  14. Scharf J, Bräuherr E, Forsting M, Sartor K (1994) Significance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage. Neuroradiology 36: 504–508

    CAS  PubMed  Google Scholar 

  15. Chan S, Kartha K, Yoon SS, Desmond DW, Hilal SK (1996) Multifocal hypointense cerebral lesions on gradient-echo MR are associated with chronic hypertension. AJNR 17: 1821–1827

    CAS  Google Scholar 

  16. Greenberg SM, Finkelstein SP, Schaefer PW (1996) Petechial hemorrhages accompanying lobar hemorrhage: detection by gradient-echo MRI. Neurology 46: 1751–1754

    CAS  PubMed  Google Scholar 

  17. Offenbacher H, Fazekas F, Schmidt R, Koch M, Fazekas G, Kapeller P (1996) MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR 17: 573–578

    CAS  Google Scholar 

  18. Fazekas F, Kleinert R, Roob G, et al (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR 20: 637–642

    CAS  Google Scholar 

  19. Greenberg SM, O’Donnell HC, Schaefer PW, Kraft E (1999) MRI detection of new hemorrhages: potential marker of progression in cerebral amyloid angiopathy. Neurology 53: 1135–1138

    CAS  PubMed  Google Scholar 

  20. Roob G, Schmidt R, Kapeller P, Lechner A, Hartung HP, Fazekas F (1999) MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 52: 991–994

    CAS  PubMed  Google Scholar 

  21. Kuzma BB, Goodman JM (2000) Improved identification of axonal shear injuries with gradient echo MR technique. Surg Neurol 53: 400–402

    CAS  PubMed  Google Scholar 

  22. Roob G, Fazekas F (2000) Magnetic resonance imaging of cerebral microbleeds. Curr Opin Neurol 13: 69–73

    Article  CAS  PubMed  Google Scholar 

  23. Tsushima Y, Tamura T, Unno Y, Kusano S, Endo K (2000) Multifocal low-signal brain lesions on T2*-weighted gradient-echo imaging. Neuroradiology 42: 499–504

    Google Scholar 

  24. Tsushima Y, Tanizaki Y, Aoki J, Endo K (2002) MR detection of microhemorrhages in neurologically healthy adults. Neuroradiology 44: 31–36

    Article  CAS  PubMed  Google Scholar 

  25. Angeleri F, Majkowski J, Cacchiò G, et al (1999) Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia 40: 1222–1230

    CAS  PubMed  Google Scholar 

  26. Campeau NG, Port JD, Miller GM (2001) Superiority of gradient echo imaging over echo-planar diffusion weighted imaging for the detection of hemosiderin. Neuroradiology 43: S89–S90

    Google Scholar 

  27. Grossman RI, Gomori JM, Goldberg HI, et al (1988) MR imaging of hemorrhagic conditions of the head and neck. Radiographics 8: 441–454

    CAS  PubMed  Google Scholar 

  28. Fobben ES, Grossman RI, Atlas SW, et al (1989) MR characteristics of subdural hematomas and hygromas at 1.5 T. AJNR 10: 687–693

    Google Scholar 

  29. Zyed A, Hayman LA, Bryan RN (1991) MR imaging of intracerebral blood: diversity in the temporal pattern at 0.5 and 1.0 T. AJNR 12: 469–474

    CAS  Google Scholar 

  30. Thulborn KR, Sorensen AG, Kowall NW, et al (1990) The role of ferritin and hemosiderin in the MR appearance of cerebral hemorrhage: a histopathologic biochemical study in rats. AJNR 11: 291–297

    CAS  Google Scholar 

  31. Chen JC, Hardy PA, Kucharczyk W, et al (1993) MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. AJNR 14: 275–281

    CAS  Google Scholar 

  32. Chen JC, Hardy PA, Clauberg M, et al (1989) T2 values in the human brain: comparison with quantitative assays of iron and ferritin. Radiology 173: 521–526

    CAS  PubMed  Google Scholar 

  33. Vymazal J, Urgosik D, Bulte JW (2000) Differentiation between hemosiderin- and ferritin-bound brain iron using NMR and MRI. Cell Mol Biol 46: 835–842

    CAS  Google Scholar 

  34. Darrow VC, Alvord EC Jr, Mack LA, Hodson WA (1988) Histologic evolution of the reactions to hemorrhage in the premature human infant’s brain. A combined ultrasound and autopsy study and a comparison with the reaction in adults. Am J Pathol 130: 44–58

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor F. Angeleri, lately Director of the Neurological Clinic of the General Hospital and University of Ancona, Professor M. Signorino, Dr G. Cacchiò, Dr S. D’Acunto and their colleagues for their work on prospective study on TBI. We are especially grateful to Dr L. Regnicolo, and to M. Cola, C. Novelli and T. Tarabelli of the MRI Unit of the University of Ancona, who made the long-term imaging study possible. We also thank Dr Simone Salvolini of the University of Ancona, for his assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Salvolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messori, A., Polonara, G., Mabiglia, C. et al. Is haemosiderin visible indefinitely on gradient-echo MRI following traumatic intracerebral haemorrhage?. Neuroradiology 45, 881–886 (2003). https://doi.org/10.1007/s00234-003-1048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-003-1048-3

Keywords

Navigation