Skip to main content

Advertisement

Log in

Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

The aim of the present study was to demonstrate characteristic signal changes of the pontine base on T2-weighted images of patients with SCA 1, and to elucidate the relationship between abnormal high-intensities of the pontine base on T2-weighted images and the findings on multishot diffusion-weighted images. We assessed abnormal signals of the pontine base on T2-weighted images from 50 controls and six patients with SCA 1 diagnosed by genetic analysis. At the same time, we evaluated the degeneration of the transverse pontine fibers in the pontine base by multishot diffusion-weighted imaging. A midline high-intensity was seen in the pontine base on T2-weighted images in two of the 50 controls and five of the six patients with SCA 1. The midline high-intensity had a sensitivity of 83.3% for patients and a specificity of 96.0% for controls. Multishot diffusion-weighted imaging demonstrated the degeneration—the amorphous-pattern signal—of the transverse pontine fibers in four (66.7%) of the six patients. In the other two patients, the zebra-pattern signal was seen in the pontine base. The midline high-intensity on T2-weighted images appears to be one of characteristic MRI findings of SCA 1. Multishot diffusion-weighted imaging suggested that the midline high-intensity should reflect the degeneration of the transverse pontine fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Orr HT, Chung MY, Banfi S et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    Article  PubMed  CAS  Google Scholar 

  2. Takiyama Y, Nishizawa M, Tanaka H et al (1993) The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet 4:300–304

    Article  PubMed  CAS  Google Scholar 

  3. Koide R, Ikeuchi T, Onodera O et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13

    Article  PubMed  CAS  Google Scholar 

  4. Nagafuchi S, Yanagisawa H, Sato K et al (1996) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 6:14–18

    Article  Google Scholar 

  5. Matsuyama Z, Kawakami H, Maruyama H et al (1997) Molecular features of the CAG repeats of spinocerebellar ataxia 6 (SCA6). Hum Mol Genet 6:1283–1288

    Article  PubMed  CAS  Google Scholar 

  6. Ishikawa K, Tanaka H, Saito M et al (1997) Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1–p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type-6 gene in chromosome 19p13.1. Am J Hum Genet 61:336–346

    Article  PubMed  CAS  Google Scholar 

  7. Wenning GK, Ben Shlomo Y, Magalhaes M, Daniel SE, Quinn NP (1994) Clinical features and natural history of multiple system atrophy; an analysis of 100 cases. Brain 117:835–845

    Article  PubMed  Google Scholar 

  8. Gilman S, Low P, Quinn N et al (1998) Consensus statement on the diagnosis of multiple system atrophy. Clin Auton Res 8:359–362

    Article  PubMed  CAS  Google Scholar 

  9. Savoiardo M, Strada L, Girotti F et al. (1990) Olivopontocerebellar atrophy: MR diagnosis and relationship to multisystem atrophy. Radiology 174:693–696

    PubMed  CAS  Google Scholar 

  10. Idezuka J, Onodera O, Yuasa T, Tsuji S, Ito J (1993) MRI findings of olivopontocerebellar atrophy and Machado-Joseph disease: diagnostic value of transverse pontine fibers. Rinsho Shinkeigaku 33:289–293

    PubMed  CAS  Google Scholar 

  11. Kojima S (1993) Clinical types of spinocerebellar degeneration and evaluation with MR imaging. Rinsho Shinkeigaku 33:1294–1296

    PubMed  CAS  Google Scholar 

  12. Naka H, Ohshita T, Murata Y, Imon Y, Mimori Y, Nakamura S (2002) Characteristic MRI findings in multiple system atrophy: comparison of the three subtypes. Neuroradiology 44:204–209

    Article  PubMed  CAS  Google Scholar 

  13. Yagishita T, Kojima S, Hirayama K (1995) MRI study of degenerative process in multiple system atrophy. Rinsho Shinkeigaku 35:126–131

    PubMed  CAS  Google Scholar 

  14. Nagaoka U, Suzuki Y, Kawanami T et al (1999) Regional differences in genetic subgroup frequency in hereditary cerebellar ataxia, and a morphometrical study of brain MR images in SCA1, MJD and SCA6. J Neurol Sci 164:187–194

    Article  PubMed  CAS  Google Scholar 

  15. Nakayama T, Nakayama K, Takahashi Y et al (2001) Case of spinocerebellar ataxia type 1 showing high intensity lesions in the frontal white matter on T2-weighted magnetic resonance images. Med Sci Monit 7:299–303

    PubMed  CAS  Google Scholar 

  16. Klockgether T, Skalej M, Wedekind D et al (1998) Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 121:1687–1693

    Article  PubMed  Google Scholar 

  17. Mascalchi M, Tosetti M, Plasmati R et al (1998) Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 43:244–252

    Article  PubMed  CAS  Google Scholar 

  18. Burk K, Abele M, Fetter M et al (1996) Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain 119:1497–1505

    Article  PubMed  Google Scholar 

  19. Koide R, Onodera O, Ikeuchi T et al (1997) Atrophy of the cerebellum and brainstem in dentatorubral pallidoluysian atrophy: influence of CAG repeat size on MRI findings. Neurology 49:1605–1612

    PubMed  CAS  Google Scholar 

  20. Otsuka H, Harada M, Hieda M et al (1996) Magnetic resonance studies of dentato-rubro-pallido-luysian atrophy-correlation with clinical severity and age of onset. No To Shinkei 48:818–823

    PubMed  CAS  Google Scholar 

  21. Muñoz E, Milà M, Sánchez A et al (1999) Dentatorubropallidoluysian atrophy in a Spanish family: a clinical, radiological, pathological, and genetic study. J Neural Neurosurg Psychiatry 67:811–814

    Article  Google Scholar 

  22. Uyama E, Kondo I, Uchino M et al (1995) Dentatorubral-pallidoluysian atrophy (DRPLA): clinical, genetic, and neuroradiologic studies in a family. J Neurol Sci 130:146–153

    Article  PubMed  CAS  Google Scholar 

  23. Adachi M, Hosoya T, Yamaguchi K, Kawanami T, Kato T (2000) Diffusion- and T2-weighted MRI of the transverse pontine fibres in spinocerebellar degeneration. Neuroradiology 42:803–809

    Article  PubMed  CAS  Google Scholar 

  24. Murata Y, Yamaguchi S, Kawakami H et al (1998) Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol 55:33–37

    Article  PubMed  CAS  Google Scholar 

  25. Adachi M, Hosoya T, Haku T, Yamaguchi K, Kawanami T (1999) Evaluation of the substantia nigra in Patients with parkinsonian syndrome accomplished using multishot diffusion-weighted imaging. Am J Neuroradiol 20:1500–1506

    PubMed  CAS  Google Scholar 

  26. Adachi M, Kawakatsu S, Hosoya T et al (2003) Morphology of the inner structure of the hippocampal formation in Alzheimer disease. Am J Neuroradiol 24:1575–1581

    PubMed  Google Scholar 

  27. Gilman S, Sima AA, Junck L et al (1996) Spinocerebellar ataxia type 1 with multiple system degeneration and glial cytoplasmic inclusions. Ann Neurol 39:241–255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Adachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi, M., Kawanami, T., Ohshima, H. et al. Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology 48, 8–13 (2006). https://doi.org/10.1007/s00234-005-0002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-005-0002-y

Keywords

Navigation