Skip to main content

Advertisement

Log in

Human cerebral cortices: signal variation on diffusion-weighted MR imaging

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images.

Methods

The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33–84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps.

Results

Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p < .01) , and significant differences existed among the cortical regions (p < .001). There were no apparent ADC differences among the cortices on ADC maps.

Conclusion

Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vymazal J, Hajeck M, Patronas N et al (1995) The quantitative relation between T1-weighted and T2-weighted MRI of normal gray matter and iron concentration. J Magn Reson Imaging 5:554–560

    Article  PubMed  CAS  Google Scholar 

  2. Hirai T, Korogi Y, Sakamoto Y, Hamatake S, Ikushima I, Takahashi M (1996) T2 shortening in motor cortex: Effect of aging and cerebrovascular disease. Radiology 199:799–803

    PubMed  CAS  Google Scholar 

  3. Korogi Y, Hirai T, Komohara Y et al (1997) T2 shortening in the visual cortex: Effect of aging and cerebrovascular disease. AJNR Am J Neuroradiol 18:711–714

    PubMed  CAS  Google Scholar 

  4. Hirai T, Korogi Y, Yoshizumi K, Shigematsu Y, Sugahara T, Takahashi M (2000) Limbic lobe of the human brain: Evaluation with turbo fluid-attenuated inversion-recovery MR imaging. Radiology 215:470–475

    PubMed  CAS  Google Scholar 

  5. DeLano MC, Cooper TG, Siebert JE, Potchen MJ, Kuppusamy K (2000) High-b-value diffusion-weighted MR imaging of adult brain: Image contrast and apparent diffusion coefficient map features. AJNR Am J Neuroradiol 21:1830–1836

    PubMed  CAS  Google Scholar 

  6. Young GS, Geschwind MD, Fischbein NJ et al (2005) Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: High sensitivity and specificity for diagnosis. AJNR Am J Neuroradiol 26:1551–1562

    PubMed  Google Scholar 

  7. Sorensen AG, Buonanno FS, Gonzalez RG et al (1996) Hyperacute stroke: Evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199:391–401

    PubMed  CAS  Google Scholar 

  8. Wessels T, Wessels C, Ellsiepen A et al (2006) Contribution of diffusion-weighted imaging in determination of stroke etiology. AJNR Am J Neuroradiol 27:35–39

    PubMed  CAS  Google Scholar 

  9. Wolf RL, Zimmerman RA, Clancy R, Haselgrove JH (2001) Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic-ischemic brain injury: Initial experience. Radiology 218:825–833

    PubMed  CAS  Google Scholar 

  10. Arbelaez A, Castillo M, Mukherji SK (1999) Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol 20:999–1007

    PubMed  CAS  Google Scholar 

  11. Bien CG, Schulze-Bonhage A, Deckert M et al (2000) Limbic encephalitis not associated with neoplasm as a cause of temporal lobe epilepsy. Neurology 55:1823–1928

    PubMed  CAS  Google Scholar 

  12. Heiner L, Demaerel P (2003) Diffusion-weighted MR imaging findings in a patient with herpes simplex encephalitis. Eur J Radiol 45:195–198

    Article  PubMed  CAS  Google Scholar 

  13. Thuerl C, Muller K, Laubenberger J, Volk B, Langer M (2003) MR imaging of autopsy-proved paraneoplastic limbic encephalitis in non-Hodgkin lymphoma. AJNR Am J Neuroradiol 24:507–511

    PubMed  Google Scholar 

  14. Lawn ND, Westmoreland BF, Kiely MJ, Lennon VA, Vernino S (2003) Clinical, magnetic resonance imaging, and electroencephalographic findings in paraneoplastic limbic encephalitis. Mayo Clin Proc 78:1363–1368

    Article  PubMed  Google Scholar 

  15. Gaviani P, Schwartz RB, Hedley-Whyte ET et al (2005) Diffusion-weighted imaging of fungal cerebral infection. AJNR Am J Neuroradiol 26:1115–1121

    PubMed  Google Scholar 

  16. Demaerel P, Baert AL, Vanopdenbosch L, Robberecht W, Dom R (1997) Diffusion-weighted magnetic resonance imaging in Creutzfeldt-Jakob disease. Lancet 349:847–848

    Article  PubMed  CAS  Google Scholar 

  17. Kinoshita T, Moritani T, Shrier DA et al (2003) Diffusion-weighted MR imaging of posterior reversible leukoencephalopathy syndrome: A pictorial essay. Clin Imaging 27:307–315

    Article  PubMed  Google Scholar 

  18. Kim JA, Chung LI, Yoon PH, Kim DI, Chung TS, Lim EJ, Jeong EK (2001) Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: Periictal diffusion-weighted imaging. AJNR Am J Neuroradiol 22:1149–1160

    PubMed  CAS  Google Scholar 

  19. Liu AY, Maldjian JA, Baglay LJ et al (1999) Traumatic brain injury: Diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 20:1636–1641

    PubMed  CAS  Google Scholar 

  20. Geijer B, Holtas S (2002) Diffusion-weighted imaging of brain metastases: Their potential to be misinterpreted as focal ischaemic lesions. Neuroradiology 44:568–573

    Article  PubMed  Google Scholar 

  21. Baba Y, Takahashi M, Korogi Y (2000) Cost-effectiveness of screening unruptured cerebral aneurysms in Japan. Eur Radiol 10:S362–S365

    Article  PubMed  Google Scholar 

  22. Tanner SF, Ramenghi LA, Ridgway JP et al (2000) Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. Am J Radiol 174:1643–1649

    CAS  Google Scholar 

  23. Wolf RL, Zimmerman RA, Clancy R et al (2001) Quantitative apparent diffusion coefficient measurements in term neonates. Radiology 218:825–833

    PubMed  CAS  Google Scholar 

  24. Helenius J, Soinne L, Perkio J et al (2002) Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol 23:194–199

    PubMed  Google Scholar 

  25. Hiwatashi A, Kinoshita T, Moritani T et al (2003) Hypointensity on diffusion-weighted MRI of the brain related to T2 shortening and susceptibility effects. AJR Am J Roentgenol 181:1705–1709

    PubMed  Google Scholar 

  26. Whittall KP, MacKay AL, Graeb DA et al (1997) In vivo measurement of T2 distribution and water contents in normal human brain. Magn Reson Med 37:34–43

    Article  PubMed  CAS  Google Scholar 

  27. Georgiades CS, Itoh R, Golay X, van Zijl PC, Melhem ER (2001) MR imaging of the human brain at 1.5 T: Regional variations in transverse relaxation rates in the cerebral cortex. AJNR Am J Neuroradiol 22:1732–1737

    PubMed  CAS  Google Scholar 

  28. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  29. Carpenter MB, Sutin J (1983) The cerebral cortex. Human neuroanatomy. Williams & Wilkins, Baltimore

  30. Berry M, Bannister LH, Standing SM (1995) Nervous system. In: Williams PL, Bannister LH, Berry M et al (eds) Gray’s anatomy, 38th edn. Churchill Livingstone, Edinburgh, pp 901–1397

    Google Scholar 

  31. Niewenhuys R, Voogd J, van Huizen C (1988) The human central nervous system: A synopsis and atlas, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  32. Chronister RB, White LE (1975) Fiber architecture of the hyppocampal formation: anatomy, projections, and structural significance. In: Isaacson RL, Pribram KH (eds) The hippocampus, structure and development, vol. 1. Plenum, New York, NY, pp 9–39

    Google Scholar 

  33. Swanson LW (1983) The hippocampus and the concept of the limbic system. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, London, pp 3–20

    Google Scholar 

  34. Schwerdtfeger WK (1984) Structure and fiber connections of the hippocampus: A comparative study. Adv Anat Embryol Cell Biol 83:1–74

    PubMed  CAS  Google Scholar 

  35. Fatterpekar GM, Naidichi TP, Delman BN et al (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 23:1313–1321

    PubMed  Google Scholar 

  36. Yakovlev PI (1962) Morphological criteria of growth and maturation of the nervous system in man. Res Publ Assoc Nerv Ment Dis 39:3–46

    CAS  Google Scholar 

  37. Yakovlev PI (1968) Telencephalon “impair” and “totopar” (moephogenetic, tectogenetic and architectonic definitions). Int J Neurol 6:245–265

    PubMed  CAS  Google Scholar 

  38. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Asao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asao, C., Hirai, T., Yoshimatsu, S. et al. Human cerebral cortices: signal variation on diffusion-weighted MR imaging. Neuroradiology 50, 205–211 (2008). https://doi.org/10.1007/s00234-007-0327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-007-0327-9

Keywords

Navigation