Skip to main content
Log in

Perfusion-CT for early assessment of traumatic cerebral contusions

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

To investigate the value of perfusion-CT (PCT) for assessment of traumatic cerebral contusions (TCC) and to compare the abilities of early noncontrast CT and PCT modalities to evaluate tissue viability.

Methods

PCT studies performed in 30 patients suffering from TCC during the acute phase of their illness were retrospectively reviewed. Cerebral blood flow (CBF), volume (CBV) and mean transit time (MTT) were measured in three different areas: the hemorrhagic core of the TCC, the surrounding hypodense area and the perilesional normal-appearing parenchyma. TCC area was measured on CBF-, CBV- and MTT-derived maps and compared with the areas measured using the same slice obtained with CT scans performed on admission, at the time of PCT (follow-up CT) and at 1 week.

Results

TCC were characterized by low CBF and CBV values (9.2±6.6 ml/100 g per min and 0.9±0.7 ml/100 g, respectively) and a significant prolongation of MTT (11.9±10.7 s) in the hemorrhagic core whereas PCT parameters were more variable in the hypodense area. The TCC whole area showed a noticeable growth of the lesions during the first week of admission. In comparison with early noncontrast CT, CBV and CBF maps proved to be more congruent with the findings of noncontrast CT scans at 1 week.

Conclusion

PCT confirmed the results of xenon-CT studies and was shown to allow better evaluation of tissue viability than noncontrast CT. These findings suggest that PCT could be implemented in the future for the early assessment of patients with traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bullock R, Golek J, Blake G (1989) Traumatic intracerebral hematoma – which patients should undergo surgical evacuation? CT scan features and ICP monitoring as a basis for decision making. Surg Neurol 32:181–187

    Article  PubMed  CAS  Google Scholar 

  2. Lobato RD, Cordobes F, Rivas JJ, de la Fuente M, Montero A, Barcena A, Perez C, Cabrera A, Lamas E (1983) Outcome from severe head injury related to the type of intracranial lesion. A computerized tomography study. J Neurosurg 59:762–774

    PubMed  CAS  Google Scholar 

  3. Lobato RD, Gomez PA, Alday R, Rivas JJ, Dominguez J, Cabrera A, Turanzas FS, Benitez A, Rivero B (1997) Sequential computerized tomography changes and related final outcome in severe head injury patients. Acta Neurochir (Wien) 139:385–391

    Article  CAS  Google Scholar 

  4. Servadei F, Nanni A, Nasi MT, Zappi D, Vergoni G, Giuliani G, Arista A (1995) Evolving brain lesions in the first 12 hours after head injury: analysis of 37 comatose patients. Neurosurgery 37:899–906

    Article  PubMed  CAS  Google Scholar 

  5. Compagnone C, Murray GD, Teasdale GM, Maas AI, Esposito D, Princi P, D’Avella D, Servadei F (2005) The management of patients with intradural post-traumatic mass lesions: a multicenter survey of current approaches to surgical management in 729 patients coordinated by the European Brain Injury Consortium. Neurosurgery 57:1183–1192

    Article  PubMed  Google Scholar 

  6. Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    PubMed  CAS  Google Scholar 

  7. Chieregato A, Fainardi E, Servadei F, Tanfani A, Pugliese G, Pascarella R, Targa L (2004) Centrifugal distribution of regional cerebral blood flow and its time course in traumatic intracerebral hematomas. J Neurotrauma 21:655–666

    Article  PubMed  Google Scholar 

  8. Furuya Y, Hlatky R, Valadka AB, Diaz P, Robertson CS (2003) Comparison of cerebral blood flow in computed tomographic hypodense areas of the brain in head-injured patients. Neurosurgery 52:340–345

    Article  PubMed  Google Scholar 

  9. Hattori N, Huang SC, Wu HM, Liao W, Glenn TC, Vespa PM, Phelps ME, Hovda DA, Bergsneider M (2003) PET investigation of post-traumatic cerebral blood volume and blood flow. Acta Neurochir Suppl 86:49–52

    PubMed  CAS  Google Scholar 

  10. Schroder ML, Muizelaar JP, Bullock MR, Salvant JB, Povlishock JT (1995) Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural studies. J Neurosurg 82:966–971

    PubMed  CAS  Google Scholar 

  11. Schroder ML, Muizelaar JP, Fatouros P, Kuta AJ, Choi SC (1998) Early cerebral blood volume after severe traumatic brain injury in patients with early cerebral ischemia. Acta Neurochir Suppl 71:127–130

    PubMed  CAS  Google Scholar 

  12. von Oettingen G, Bergholt B, Gyldensted C, Astrup J (2002) Blood flow and ischemia within traumatic cerebral contusions. Neurosurgery 50:781–788

    Article  Google Scholar 

  13. Wintermark M, Van Melle G, Schnyder P, Revelly JP, Porchet F, Regli L, Meuli R, Maeder P, Chiolero R (2004) Admission perfusion CT: prognostic value in patients with severe head trauma. Radiology 232:211–220

    Article  PubMed  Google Scholar 

  14. McLaughlin MR, Marion DW (1996) Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J Neurosurg 85:871–876

    Article  PubMed  CAS  Google Scholar 

  15. Cunningham AS, Salvador R, Coles JP, Chatfield DA, Bradley PG, Johnston AJ, Steiner LA, Fryer TD, Aigbirhio FI, Smielewski P, Williams GB, Carpenter TA, Gillard JH, Pickard JD, Menon DK (2005) Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128:1931–1942

    Article  PubMed  CAS  Google Scholar 

  16. Koenig M, Kraus M, Theek C, Klotz E, Gehlen W, Heuser L (2001) Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke 32:431–437

    PubMed  CAS  Google Scholar 

  17. Muir KW, Halbert HM, Baird TA, McCormick M, Teasdale E (2006) Visual evaluation of perfusion computed tomography in acute stroke accurately estimates infarct volume and tissue viability. J Neurol Neurosurg Psychiatry 77:334–339

    Article  PubMed  CAS  Google Scholar 

  18. Sakoh M, Rohl L, Gyldensted C, Gjedde A, Ostergaard L (2000) Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs: comparison with [(15)O]H(2)O positron emission tomography. Stroke 31:1958–1964

    PubMed  CAS  Google Scholar 

  19. Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Koroshetz WJ (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210:519–527

    PubMed  CAS  Google Scholar 

  20. Garnett MR, Blamire AM, Corkill RG, Rajagopalan B, Young JD, Cadoux-Hudson TA, Styles P (2001) Abnormal cerebral blood volume in regions of contused and normal appearing brain following traumatic brain injury using perfusion magnetic resonance imaging. J Neurotrauma 18:585–593

    Article  PubMed  CAS  Google Scholar 

  21. Soustiel JF, Mor N, Zaaroor M, Goldsher D (2006) Cerebral perfusion computerized tomography: influence of reference vessels, regions of interest and interobserver variability. Neuroradiology 48:670–677

    Article  PubMed  Google Scholar 

  22. Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11:1220–1230

    Article  PubMed  CAS  Google Scholar 

  23. Axel L (1983) Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol 18:94–99

    Article  PubMed  CAS  Google Scholar 

  24. Norman D, Axel L, Berninger WH, Edwards MS, Cann CE, Redington RW, Cox L (1981) Dynamic computed tomography of the brain: techniques, data analysis, and applications. AJR Am J Roentgenol 136:759–770

    PubMed  CAS  Google Scholar 

  25. Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, Miyasaka K (2003) Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol 24:419–426

    PubMed  Google Scholar 

  26. Sviri GE, Britz GW, Lewis DH, Newell DW, Zaaroor M, Cohen W (2006) Dynamic perfusion computed tomography in the diagnosis of cerebral vasospasm. Neurosurgery 59:319–325

    Article  PubMed  Google Scholar 

  27. Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, Pineda C, Serena J, van der Schaaf I, Waaijer A, Anderson J, Nesbit G, Gabriely I, Medina V, Quiles A, Pohlman S, Quist M, Schnyder P, Bogousslavsky J, Dillon WP, Pedraza S (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37:979–985

    Article  PubMed  Google Scholar 

  28. Furukawa M, Kashiwagi S, Matsunaga N, Suzuki M, Kishimoto K, Shirao S (2002) Evaluation of cerebral perfusion parameters measured by perfusion CT in chronic cerebral ischemia: comparison with xenon CT. J Comput Assist Tomogr 26:272–278

    Article  PubMed  Google Scholar 

  29. Sase S, Honda M, Machida K, Seiki Y (2005) Comparison of cerebral blood flow between perfusion computed tomography and xenon-enhanced computed tomography for normal subjects: territorial analysis. J Comput Assist Tomogr 29:270–277

    Article  PubMed  Google Scholar 

  30. Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R (2001) Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol 22:905–914

    PubMed  CAS  Google Scholar 

  31. Wintermark M, Chiolero R, Van Melle G, Revelly JP, Porchet F, Regli L, Meuli R, Schnyder P, Maeder P (2004) Relationship between brain perfusion computed tomography variables and cerebral perfusion pressure in severe head trauma patients. Crit Care Med 32:1579–1587

    Article  PubMed  Google Scholar 

  32. Hiler M, Czosnyka M, Hutchinson P, Balestreri M, Smielewski P, Matta B, Pickard JD (2006) Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg 104:731–737

    Article  PubMed  Google Scholar 

  33. Lang EW, Lagopoulos J, Griffith J, Yip K, Mudaliar Y, Mehdorn HM, Dorsch NW (2003) Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J Neurotrauma 20:69–75

    Article  PubMed  Google Scholar 

  34. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their deep gratitude to Mrs. Aliza Turgeman, Mr. Shmuel Weizman and Mr. Pesah Ladoviz, technologists of the Computerized Tomography Unit, for their outstanding technical support.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean F. Soustiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soustiel, J.F., Mahamid, E., Goldsher, D. et al. Perfusion-CT for early assessment of traumatic cerebral contusions. Neuroradiology 50, 189–196 (2008). https://doi.org/10.1007/s00234-007-0337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-007-0337-7

Keywords

Navigation