Skip to main content

Advertisement

Log in

Pattern approach to MR imaging in patients with end-stage hepatic failure: a proposal for a new disease entity “hepatic encephalopathy continuum”

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to evaluate the clinical features and the characteristics of MR images of patients with end-stage hepatic failure.

Methods

We reviewed the MR findings and clinical features of 31 consecutive patients (20 men, 11 women=31, mean age 58.7 years) who had been diagnosed with clinical hepatic encephalopathy. Associations between the lesion locations on each MR sequence were analyzed using a binominal test. The clinical and MR findings were compared in relation to the etiology and clinical status.

Results

The most frequently involved site, seen as high signal intensity on T2-W images, was the corpus callosum (20 patients), followed by the dentate nucleus (16 patients) and the globus pallidus (13 patients). Significant associations were seen between the pallidus and the crus cerebri, between the crus cerebri and the red nucleus, between the crus cerebri and the dentate nucleus, and between the red nucleus and the dentate nucleus on the T2-W and DW images (P < 0.004). The crus cerebri, red nucleus, and dentate nucleus were involved concurrently with the corpus callosum more frequently in hepatic encephalopathy grades 3 and 4.

Conclusion

Concurrent involvement of the globus pallidus–crus cerebri–red nucleus–dentate nucleus axis was the main MR pattern in end-stage hepatic encephalopathy, which connected with various areas of the brain. We hypothesize that these overlapping MR features could be regarded as an entity denoted as the “hepatic encephalopathy continuum”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hazell A, Butterworth R (1999) Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc Soc Exp Biol Med 222:99–112

    Article  PubMed  CAS  Google Scholar 

  2. Sherlock S (1977) Hepatic encephalopathy. Br J Hosp Med 17:144–146, 151–154, 159

  3. Inoue E, Hori S, Narumi Y et al (1991) Portal-systemic encephalopathy: presence of basal ganglia lesions with high signal intensity on MR images. Radiology 179:551–555

    PubMed  CAS  Google Scholar 

  4. Zeneroli M, Cioni G, Crisi G et al (1991) Globus pallidus alterations and brain atrophy in liver cirrhosis patients with encephalopathy: an MR imaging study. Magn Reson Imaging 9:295–302

    Article  PubMed  CAS  Google Scholar 

  5. Pujol A, Pujol J, Graus F et al (1993) Hyperintense globus pallidus on T1-weighted MRI in cirrhotic patients is associated with severity of liver failure. Neurology 43:65–69

    PubMed  CAS  Google Scholar 

  6. Bernuau J, Rueff B, Benhamou JP (1986) Fulminant and subfulminant liver failure: definitions and causes. Semin Liver Dis 6:97–106

    PubMed  CAS  Google Scholar 

  7. Hoofnagle JH, Carithers RL Jr, Shapiro C et al (1995) Fulminant hepatic failure: summary of a workshop. Hepatology 21:240–252

    PubMed  CAS  Google Scholar 

  8. Kato M, Hughes R, Keays R et al (1992) Electron microscopic study of brain capillaries in cerebral edema from fulminant hepatic failure. Hepatology 15:1060–1066

    Article  PubMed  CAS  Google Scholar 

  9. Traber P, Dal Canto M, Ganger D et al (1987) Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: ultrastructure and integrity of the blood-brain barrier. Hepatology 7:1272–1277

    Article  PubMed  CAS  Google Scholar 

  10. Vymazal J, Babis M, Brooks RA et al (1996) T1 and T2 alterations in the brains of patients with hepatic cirrhosis. AJNR Am J Neuroradiol 17:333–336

    PubMed  CAS  Google Scholar 

  11. Cordoba J, Raguer N, Flavia M et al (2003) T2 hyperintensity along the cortico-spinal tract in cirrhosis relates to functional abnormalities. Hepatology 38:1026–1033

    PubMed  Google Scholar 

  12. Matsusue E, Kinoshita T, Ohama E et al (2005) Cerebral cortical and white matter lesions in chronic hepatic encephalopathy: MR-pathologic correlations. AJNR Am J Neuroradiol 26:347–351

    PubMed  Google Scholar 

  13. Rovira A, Cordoba J, Sanpedro F et al (2002) Normalization of T2 signal abnormalities in hemispheric white matter with liver transplant. Neurology 59:335–341

    PubMed  CAS  Google Scholar 

  14. Volk ML, Marrero JA (2006) Advances in critical care hepatology. Minerva Anestesiol 72:269–281

    PubMed  CAS  Google Scholar 

  15. Trey C, Davidson CS (1970) The management of fulminant hepatic failure. Prog Liver Dis 3:282–298

    PubMed  CAS  Google Scholar 

  16. Gill RQ, Sterling RK (2001) Acute liver failure. J Clin Gastroenterol 33:191–198

    Article  PubMed  CAS  Google Scholar 

  17. Giuffrida R, Aicardi G, Canedi A et al (1993) Excitatory amino acids as neurotransmitters of cortical and cerebellar projections to the red nucleus: an immunocytochemical study in the guinea pig. Somatosens Mot Res 10:365–376

    Article  PubMed  CAS  Google Scholar 

  18. Walberg F, Dietrichs E (1986) Is there a reciprocal connection between the red nucleus and the interposed cerebellar nuclei? Conclusions based on observations of anterograde and retrograde transport of peroxidase-labelled lectin in the same animal. Brain Res 397:73–85

    Article  PubMed  CAS  Google Scholar 

  19. Nieoullon A, Dusticier N (1981) Increased glutamate decarboxylase activity in the red nucleus of the adult cat after cerebellar lesions. Brain Res 224:129–139

    Article  PubMed  CAS  Google Scholar 

  20. Naus C, Flumerfelt B, Hrycyshyn A (1984) Topographic specificity of aberrant cerebellorubral projections following neonatal hemicerebellectomy in the rat. Brain Res 309:1–15

    Article  PubMed  CAS  Google Scholar 

  21. Norenberg M, Bender A (1994) Astrocyte swelling in liver failure: role of glutamine and benzodiazepines. Acta Neurochir Suppl (Wien) 60:24–27

    CAS  Google Scholar 

  22. Taylor-Robinson SD, Sargentoni J, Oatridge A et al (1996) MR imaging and spectroscopy of the basal ganglia in chronic liver disease: correlation of T1-weighted contrast measurements with abnormalities in proton and phosphorus-31 MR spectra. Metab Brain Dis 11:249–268

    Article  PubMed  CAS  Google Scholar 

  23. Felipo V (2006) Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy. World J Gastroenterol 12:7737–7743

    PubMed  CAS  Google Scholar 

  24. Angaut P, Batini C, Billard J et al (1986) The cerebellorubral projection in the rat: retrograde anatomical study. Neurosci Lett 68:63–68

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura Y, Kitao Y, Moriizumi T et al (1987) Electron microscopic study of the rubrocerebellar projection in the cat. J Comp Neurol 258:611–621

    Article  PubMed  CAS  Google Scholar 

  26. Caughell K, Flumerfelt B (1977) The organisation of the cerebellorubral projection: an experiment study in the rat. J Comp Neurol 176:295–306

    Article  PubMed  CAS  Google Scholar 

  27. Alvarez-Leal M, Contreras-Hernandez D, Chavez A et al (2001) Leukocyte arylsulfatase A activity in patients with alcohol-related cirrhosis. Am J Hum Biol 13:297–300

    Article  PubMed  CAS  Google Scholar 

  28. Rovira A, Mínguez B, Aymerich FX et al (2007) Decreased white matter lesion volume and improved cognitive function after liver transplantation. Hepatology 46:1485–1490

    Article  PubMed  Google Scholar 

  29. Regan M, Huang Y, Kim Y et al (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27:6607–6619

    Article  PubMed  CAS  Google Scholar 

  30. Sajith J, Ditchfield A, Katifi H (2006) Extrapontine myelinolysis presenting as acute parkinsonism. BMC Neurol 6:33

    Article  PubMed  CAS  Google Scholar 

  31. Sterns R, Riggs J, Schochet S (1986) Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med 314:1535–1542

    PubMed  CAS  Google Scholar 

  32. Martin R (2004) Central pontine and extrapontine myelinolysis: the osmotic demyelination syndromes. J Neurol Neurosurg Psychiatry 75 [Suppl 3]:iii22–iii28

    Article  PubMed  Google Scholar 

  33. Adams R, Victor M, Mancall E (1959) Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. AMA Arch Neurol Psychiatry 81:154–172

    PubMed  CAS  Google Scholar 

  34. Kleinschmidt-DeMasters B, Norenberg M (1981) Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science 211:1068–1070

    Article  PubMed  CAS  Google Scholar 

  35. Butterworth R, Giguere J, Michaud J et al (1987) Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 6:1–12

    Article  PubMed  CAS  Google Scholar 

  36. Kreis R, Farrow N, Ross BD (1991) Localized 1H NMR spectroscopy in patients with chronic hepatic encephalopathy. Analysis of changes in cerebral glutamine, choline and inositols. NMR Biomed 4:109–116

    Article  PubMed  CAS  Google Scholar 

  37. Cordoba J, Gottstein J, Blei A (1996) Glutamine, myo-inositol, and organic brain osmolytes after portocaval anastomosis in the rat: implications for ammonia-induced brain edema. Hepatology 24:919–923

    PubMed  CAS  Google Scholar 

  38. Shawcross D, Balata S, Olde Damink S et al (2004) Low myo-inositol and high glutamine levels in brain are associated with neuropsychological deterioration after induced hyperammonemia. Am J Physiol Gastrointest Liver Physiol 287:G503–G509

    Article  PubMed  CAS  Google Scholar 

  39. Silver S, Schroeder B, Sterns R et al (2006) Myoinositol administration improves survival and reduces myelinolysis after rapid correction of chronic hyponatremia in rats. J Neuropathol Exp Neurol 65:37–44

    Article  PubMed  CAS  Google Scholar 

  40. Victor M, Adams R, Cole M (1965) The acquired (non-Wilsonian) type of chronic hepatocerebral degeneration. Medicine (Baltimore) 44:345–396

    Article  CAS  Google Scholar 

  41. Kleinschmidt-DeMasters B, Filley C, Rojiani A (2006) Overlapping features of extrapontine myelinolysis and acquired chronic (non-Wilsonian) hepatocerebral degeneration. Acta Neuropathol (Berl) 112:605–616

    Article  CAS  Google Scholar 

  42. Lee J, Lacomis D, Comu S et al (1998) Acquired hepatocerebral degeneration: MR and pathologic findings. AJNR Am J Neuroradiol 19:485–487

    PubMed  CAS  Google Scholar 

  43. Goebel H, Zur P (1972) Central pontine myelinolysis. A clinical and pathological study of 10 cases. Brain 95:495–504

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Joong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.K., Lee, H.J., Lee, W. et al. Pattern approach to MR imaging in patients with end-stage hepatic failure: a proposal for a new disease entity “hepatic encephalopathy continuum”. Neuroradiology 50, 683–691 (2008). https://doi.org/10.1007/s00234-008-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-008-0395-5

Keywords

Navigation