Skip to main content

Advertisement

Log in

Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data.

Materials and methods

From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20–24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists.

Results

A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures.

Conclusion

The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kubik-Huch RA, Huisman TA, Wisser J et al (2000) Ultrafast MR imaging of the fetus. AJR Am J Roentgenol 174(6):1599–1606 Jun

    PubMed  CAS  Google Scholar 

  2. Bekker MN, van Vugt JM (2001) The role of magnetic resonance imaging in prenatal diagnosis of fetal anomalies. Eur J Obstet Gynecol Reprod Biol 96(2):173–178 Jun

    Article  PubMed  CAS  Google Scholar 

  3. Breysem L, Bosmans H, Dymarkowski S et al (2003) The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur Radiol 13(7):1538–1548 Jul

    Article  PubMed  CAS  Google Scholar 

  4. Levine D, Barnes PD, Robertson RR et al (2003) Fast MR imaging of central nervous system abnormalities. Radiology 229(1):51–61 Oct

    Article  PubMed  Google Scholar 

  5. Frates MC, Kumar AJ, Benson CB et al (2004) Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology 232(2):398–404 Aug

    Article  PubMed  Google Scholar 

  6. Whitby EH, Paley MN, Sprigg A et al (2004) Comparison of ultrasound and magnetic resonance imaging in 100 singleton pregnancies with suspected brain abnormalities. BJOG 111(8):784–792 Aug

    Article  PubMed  CAS  Google Scholar 

  7. Garel C, Chantrel E, Elmaleh M et al (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19(7–8):422–425 Aug

    Article  PubMed  Google Scholar 

  8. Garel C (2005) Fetal cerebral biometry: normal parenchymal findings and ventricular size. Eur Radiol 15:809–813

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe Y, Abe S, Takagi K et al (2005) Evolution of subarachnoid space in normal fetuses using magnetic resonance imaging. Prenat Diag 25:1217–1222

    Article  Google Scholar 

  10. Twickler DM, Reichel T, McIntire DD et al (2002) Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging. Am J Obstet Gynecol 187:927–931

    Article  PubMed  Google Scholar 

  11. Levine D, Hatabu H, Gaa J et al (1996) Fetal anatomy revealed with fast MR sequences. AJR Am J Roentgenol 167:905–908 October

    PubMed  CAS  Google Scholar 

  12. Prayer D, Kasprian G, Krampl E et al (2006) MRI of normal fetal brain development. Eur J Radiol 57:199–216

    Article  PubMed  Google Scholar 

  13. Claude I, Daire JL, Sebag G (2004) Fetal brain MRI: segmentation and biometric analysis of the posterior fossa. IEEE Trans Biomed Eng 51(4):617–626 Apr

    Article  PubMed  Google Scholar 

  14. Guibaud L (2004) Practical approach to prenatal posterior fossa abnormalities using MRI. Pediatr Radiol 34:700–711

    Article  PubMed  Google Scholar 

  15. Garel C (2004) MRI of the fetal brain. Springer, Berlin, p 29

    Google Scholar 

  16. Stazzone MM, Hubbard AM, Bilaniuk LT et al (2000) Ultrafast MR imaging of the normal posterior fossa in fetuses. AJR Am J Roentgenol 175:835–839 September

    PubMed  CAS  Google Scholar 

  17. Rados M, Judas M, Kostovic I (2006) In vitro MRI of brain development. Eur J Radiol 57:187–198

    Article  PubMed  Google Scholar 

  18. Hertzberg BS, Kliewer MA, Freed KS et al (1997) Third ventricle: size and appearance in normal fetuses through gestation. Radiology 203(3):641–644

    PubMed  CAS  Google Scholar 

  19. Amin RS, Nikolaidis P, Kawashima A et al (1999) Normal anatomy of the fetus at MR imaging. Radiographics 19:S201–S214

    PubMed  Google Scholar 

  20. Zalel Y, Seidman DS, Brandt N et al (2002) The development of the fetal vermis: an in-utero sonographic evaluation. Ultrasound Obstet Gynecol 19:136–139

    Article  PubMed  CAS  Google Scholar 

  21. Triulzi F, Parazzini C, Righini A (2005) MRI of fetal and neonatal cerebellar development. Semin Fetal Neonatal Med 10:411–420

    PubMed  Google Scholar 

  22. Chong BW, Babcook CJ, Pang D, Ellis WG (1997) A magnetic resonance template for normal cerebellar development in the human fetus. Neurosurgery 41(4):924–929 Oct

    Article  PubMed  CAS  Google Scholar 

  23. Malinger G, Zakut H (1993) The corpus callosum: normal fetal development as shown by transvaginal sonography. AJR Am J Roentgenol 161:1041–1043

    PubMed  CAS  Google Scholar 

  24. Garel C, Brisse H, Sebag G et al (1998) Magnetic resonance imaging of the fetus. Pediatr Radiol 28:201–211

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Parazzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parazzini, C., Righini, A., Rustico, M. et al. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks. Neuroradiology 50, 877–883 (2008). https://doi.org/10.1007/s00234-008-0421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-008-0421-7

Keywords

Navigation