Skip to main content
Log in

Quantitative assessment of changes in carotid plaques during cilostazol administration using three-dimensional ultrasonography and non-gated magnetic resonance plaque imaging

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Cilostazol, an antiplatelet agent, is reported to induce the regression of atherosclerotic changes. However, its effects on carotid plaques are unknown. Hence, we quantitatively investigated the changes that occur within carotid plaques during cilostazol administration using three-dimensional (3D) ultrasonography (US) and non-gated magnetic resonance (MR) plaque imaging.

Methods

We prospectively examined 16 consecutive patients with carotid stenosis. 3D-US and T1-weighted MR plaque imaging were performed at baseline and 6 months after initiating cilostazol therapy (200 mg/day). We measured the volume and grayscale median (GSM) of the plaques from 3D-US data. We also calculated the contrast ratio (CR) of the carotid plaque against the adjacent muscle and areas of the intraplaque components: fibrous tissue, lipid, and hemorrhage components.

Results

The plaque volume on US decreased significantly (median at baseline and 6 months, 0.23 and 0.21 cm3, respectively; p = 0.03). In the group exhibiting a plaque volume reduction of more than 10%, GSM on US increased significantly (24.8 and 71.5, respectively; p = 0.04) and CR on MRI decreased significantly (1.13 and 1.04, respectively; p = 0.02). In this group, in addition, the percent area of the fibrous component on MRI increased significantly (68.6% and 79.4%, respectively; p = 0.02), while those of the lipid and hemorrhagic components decreased (24.9% and 20.5%, respectively; p = 0.12) (1.0% and 0.0%, respectively; p = 0.04). There were no substantial changes in intraplaque characteristics in either US or MRI in the other group.

Conclusions

3D-US and MR plaque imaging can quantitatively detect changes in the size and composition of carotid plaques during cilostazol therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Uchiyama S, Demaerschalk BM, Goto S, Shinohara Y, Gotoh F, Stone WM, Money SR, Kwon SU (2009) Stroke prevention by cilostazol in patients with atherothrombosis: meta-analysis of placebo-controlled randomized trials. J Stroke Cerebrovasc Dis 18(6):482–490. doi:10.1016/j.jstrokecerebrovasdis.2009.07.010

    Article  PubMed  Google Scholar 

  2. Shinohara Y, Katayama Y, Uchiyama S, Yamaguchi T, Handa S, Matsuoka K, Ohashi Y, Tanahashi N, Yamamoto H, Genka C, Kitagawa Y, Kusuoka H, Nishimaru K, Tsushima M, Koretsune Y, Sawada T, Hamada C (2010) Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomized non-inferiority trial. Lancet Neurol 9:959–968. doi:10.1016/S1474-4422(10)70198-8

    Article  PubMed  CAS  Google Scholar 

  3. Katakami N, Kim YS, Kawamori R, Yamasaki Y (2010) The phosphodiesterase inhibitor cilostazol induces regression of carotid atherosclerosis in subjects with type 2 diabetes mellitus: principal results of the Diabetic Atherosclerosis Prevention by Cilostazol (DAPC) study: a randomized trial. Circulation 121:2584–2591. doi:10.1161/CIRCULATIONAHA.109.892414

    Article  PubMed  CAS  Google Scholar 

  4. Takeda M, Yamashita T, Shinohara M, Sasaki N, Tawa H, Nakajima K, Momose A, Hirata KI (2011) Beneficial effect of anti-platelet therapies on atherosclerotic lesion formation assessed by phase-contrast X-ray CT imaging. Int J Cardiovasc Imaging. doi:10.1007/s10554-011-9910-6

  5. Lee JH, Oh GT, Park SY, Choi JH, Park JG, Kim CD, Lee WS, Rhim BY, Shin YW, Hong KW (2005) Cilostazol reduces atherosclerosis by inhibition of superoxide and tumor necrosis factor-alpha formation in low-density lipoprotein receptor-null mice fed high cholesterol. J Pharmacol Exp Ther 313:502–509

    Article  PubMed  CAS  Google Scholar 

  6. Nakaya K, Ayaori M, Uto-Kondo H, Hisada T, Ogura M, Yakushiji E, Takiguchi S, Terao Y, Ozasa H, Sasaki M, Komatsu T, Ohsuzu F, Ikewaki K (2010) Cilostazol enhances macrophage reverse cholesterol transport in vitro and in vivo. Atherosclerosis 213:135–141. doi:10.1016/j.atherosclerosis.2010.07.024

    Article  PubMed  CAS  Google Scholar 

  7. Iba T, Kidokoro A, Fukunaga M, Takuhiro K, Ouchi M, Ito Y (2006) Comparison of the protective effects of type III phosphodiesterase (PDE3) inhibitor (cilostazol) and acetylsalicylic acid on intestinal microcirculation after ischemia reperfusion injury in mice. Shock 26:522–526. doi:10.1097/01.shk.0000228800.56223.db

    Article  PubMed  CAS  Google Scholar 

  8. Otsuki M, Saito H, Xu X, Sumitani S, Kouhara H, Kurabayashi M, Kasayama S (2001) Cilostazol represses vascular cell adhesion molecule-1 gene transcription via inhibiting NF-kappaB binding to its recognition sequence. Atherosclerosis 158:121–128

    Article  PubMed  CAS  Google Scholar 

  9. Kwon SU, Cho YJ, Koo JS, Bae HJ, Lee YS, Hong KS, Lee JH, Kim JS (2005) Cilostazol prevents the progression of the symptomatic intracranial arterial stenosis: the multicenter double-blind placebo-controlled trial of cilostazol in symptomatic intracranial arterial stenosis. Stroke 36:782–786. doi:10.1161/01.STR.0000157667.06542.b7

    Article  PubMed  CAS  Google Scholar 

  10. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  PubMed  CAS  Google Scholar 

  11. Narumi S, Sasaki M, Ohba H, Ogasawara K, Hitomi J, Mori K, Ohura K, Ono A, Terayama Y (2010) Altered carotid plaque signal among different repetition times on T1-weighted magnetic resonance plaque imaging with self-navigated radial-scan technique. Neuroradiology 52:285–290. doi:10.1007/s00234-009-0642-4

    Article  PubMed  Google Scholar 

  12. Sabetai MM, Tegos TJ, Nicolaides AN, Dhanjil S, Pare GJ, Stevens JM (2000) Reproducibility of computer-quantified carotid plaque echogenicity: can we overcome the subjectivity? Stroke 31:2189–2196

    Article  PubMed  CAS  Google Scholar 

  13. Sztajzel R, Momjian-Mayor I, Comelli M, Momjian S (2006) Correlation of cerebrovascular symptoms and microembolic signals with the stratified gray-scale median analysis and color mapping of the carotid plaque. Stroke 37:824–829. doi:10.1161/01.STR.0000204277.86466.f0

    Article  PubMed  Google Scholar 

  14. Makris GC, Lavida A, Nicolaides AN, Geroulakos G (2010) The effect of statins on carotid plaque morphology: a LDL-associated action or one more pleiotropic effect of statins? Atherosclerosis 213:8–20. doi:10.1016/j.atherosclerosis.2010.04.032

    Article  PubMed  CAS  Google Scholar 

  15. Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J, Tran N, Polissar NL, Isaac C, Ferguson MS, Garden GA, Cramer SC, Maravilla KR, Hashimoto B, Hatsukami TS (2006) Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI—initial results. Stroke 37:818–823. doi:10.1161/01.STR.0000204638.91099.91

    Article  PubMed  Google Scholar 

  16. Yoshida K, Narumi O, Chin M, Inoue K, Tabuchi T, Oda K, Nagayama M, Egawa N, Hojo M, Goto Y, Watanabe Y, Yamagata S (2008) Characterization of carotid atherosclerosis and detection of soft plaque with use of black-blood MR imaging. AJNR Am J Neuroradiol 29:868–874. doi:10.3174/ajnr.A1015

    Article  PubMed  CAS  Google Scholar 

  17. Vicenzini E, Giannoni MF, Puccinelli F, Ricciardi MC, Altieri M, Di Piero V, Gossetti B, Valentini FB, Lenzi GL (2007) Detection of carotid adventitial vasa vasorum and plaque vascularization with ultrasound cadence contrast pulse sequencing technique and echo-contrast agent. Stroke 38:2841–2843. doi:10.1161/STROKEAHA.107.48791818

    Article  PubMed  Google Scholar 

  18. Unger EC, Cohen MS, Brown TR (1989) Gradient-echo imaging of hemorrhage at 1.5 Tesla. Magn Reson Imaging 7:163–172

    Article  PubMed  CAS  Google Scholar 

  19. Lee YS, Kwon ST, Kim JO, Choi ES (2011) Serial MR imaging of intramuscular hematoma: experimental study in a rat model with the pathologic correlation. Korean J Radiol 12:66–77. doi:10.3348/kjr.2011.12.1.66

    Article  PubMed  Google Scholar 

  20. Kullmer K, Sievers KW, Rompe JD, Nagele M, Harland U (1997) Sonography and MRI of experimental muscle injuries. Arch Orthop Trauma Surg 116:357–361

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid for Strategic Medical Science Research and Grants-in-Aid for Science Research (22890169, 22590963) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by a Research Grant for Cardiovascular Diseases (20C-1) from the Ministry of Heath, Labor and Welfare of Japan.

Conflict of interest

MS has served as a consultant for Hitachi Medical Corporation and has received honoraria for lectures from Hitachi Medical Corporation, GE Healthcare, and Otsuka Pharmaceutical Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M., Sasaki, M., Ohba, H. et al. Quantitative assessment of changes in carotid plaques during cilostazol administration using three-dimensional ultrasonography and non-gated magnetic resonance plaque imaging. Neuroradiology 54, 939–945 (2012). https://doi.org/10.1007/s00234-012-1011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1011-2

Keywords

Navigation