Skip to main content

Advertisement

Log in

Quantitative imaging values of CT, MR, and FDG-PET to differentiate pineal parenchymal tumors and germinomas: are they useful?

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Quantitative values of CT attenuation, apparent diffusion coefficient (ADC), and standardized uptake value (SUV) were investigated for differentiation between pineal parenchymal tumors (PPTs) and germinomas. Differences in age, sex, and calcification pattern were also evaluated.

Methods

Twenty-three patients with PPTs and germinomas in 20 years were retrospectively enrolled under the approval of the institutional review board. CT attenuation, ADC, and SUV (20, 13, and 10 patients, respectively) were statistically compared between the two tumors. Differences in sex and patterns of calcification (“exploded” or “engulfed”) were also examined. Mean patient ages were compared among three groups of pineoblastoma, pineal parenchymal tumor of intermediate differentiation, (PPTID) and pineocytoma and germinoma.

Results

None of the quantitative values of CT attenuation, ADC, and SUV showed significant differences between PPTs and germinomas (p > .05). However, there was a significant difference in age (p < .05) among the three groups of pineoblastoma (mean age ± standard deviation 7.0 ± 8.7 years), PPTID, and pineocytoma (53.7 ± 11.4 years) and germinoma (19.1 ± 8.1 years). Sex also showed significant differences between PPTs and germinomas (p = .039). Exploded pattern of calcification was found in 9 of 11 PPT patients and engulfed pattern in 7 of 9 patients with germinomas. No reverse pattern was observed, and the patterns of calcification were considered highly specific of tumor types.

Conclusions

None of the quantitative imaging values could differentiate PPTs from germinomas. Age, sex, and calcification patterns were confirmed useful in differentiating these tumors to some degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Senft C, Raabe A, Hattingen E, Sommerlad D, Seifert V, Franz K (2008) Pineal parenchymal tumor of intermediate differentiation: diagnostic pitfalls and discussion of treatment options of a rare tumor entity. Neurosurg Rev 31(2):231–236. doi:10.1007/s10143-008-0126-8

    Article  PubMed  Google Scholar 

  2. Smith AB, Rushing EJ, Smirniotopoulos JG (2010) From the archives of the AFIP: lesions of the pineal region: radiologic-pathologic correlation. Radiographics 30(7):2001–2020. doi:10.1148/rg.307105131

    Article  PubMed  Google Scholar 

  3. Han SJ, Clark AJ, Ivan ME, Parsa AT, Perry A (2011) Pathology of pineal parenchymal tumors. Neurosurg Clin N Am 22(3):335–340. doi:10.1016/j.nec.2011.05.006, vii

    Article  PubMed  Google Scholar 

  4. Gaillard F, Jones J (2010) Masses of the pineal region: clinical presentation and radiographic features. Postgrad Med J 86(1020):597–607. doi:10.1136/pgmj.2009.087460

    Article  PubMed  Google Scholar 

  5. Horowitz MB, Hall WA (1991) Central nervous system germinomas. A review. Arch Neurol 48(6):652–657

    Article  PubMed  CAS  Google Scholar 

  6. Lekovic GP, Gonzalez LF, Shetter AG, Porter RW, Smith KA, Brachman D, Spetzler RF (2007) Role of Gamma Knife surgery in the management of pineal region tumors. Neurosurg Focus 23(6):E12. doi:10.3171/FOC-07/12/E12

    Article  PubMed  Google Scholar 

  7. Louis D, Ohgaki H, Wiestler O, Cavenee W et al (2007) The 2007 WHO classification of tumours of the central nervous system. 4th edition. World Health Organization. Acta Neuropathol 114(2):97–109

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wilson DA, Awad AW, Brachman D, Coons SW, McBride H, Youssef E, Nakaji P, Shetter AG, Smith KA, Spetzler RF, Sanai N (2012) Long-term radiosurgical control of subtotally resected adult pineocytomas. J Neurosurg 117(2):212–217. doi:10.3171/2012.5.JNS1251

    Article  PubMed  Google Scholar 

  9. Pusztaszeri M, Pica A, Janzer R (2006) Pineal parenchymal tumors of intermediate differentiation in adults: case report and literature review. Neuropathology 26(2):153–157

    Article  PubMed  Google Scholar 

  10. Fauchon F, Jouvet A, Paquis P, Saint-Pierre G, Mottolese C, Ben Hassel M, Chauveinc L, Sichez JP, Philippon J, Schlienger M, Bouffet E (2000) Parenchymal pineal tumors: a clinicopathological study of 76 cases. Int J Radiat Oncol Biol Phys 46(4):959–968

    Article  PubMed  CAS  Google Scholar 

  11. Tate MC, Rutkowski MJ, Parsa AT (2011) Contemporary management of pineoblastoma. Neurosurg Clin N Am 22(3):409–412. doi:10.1016/j.nec.2011.05.001, ix

    Article  PubMed  Google Scholar 

  12. Ganti SR, Hilal SK, Stein BM, Silver AJ, Mawad M, Sane P (1986) CT of pineal region tumors. AJR Am J Roentgenol 146(3):451–458. doi:10.2214/ajr.146.3.451

    Article  PubMed  CAS  Google Scholar 

  13. Smirniotopoulos JG, Rushing EJ, Mena H (1992) Pineal region masses: differential diagnosis. Radiographics 12(3):577–596

    Article  PubMed  CAS  Google Scholar 

  14. Korogi Y, Takahashi M, Ushio Y (2001) MRI of pineal region tumors. J Neurooncol 54(3):251–261

    Article  PubMed  CAS  Google Scholar 

  15. Reis F, Faria AV, Zanardi VA, Menezes JR, Cendes F, Queiroz LS (2006) Neuroimaging in pineal tumors. J Neuroimaging 16(1):52–58. doi:10.1177/1051228405001514

    Article  PubMed  CAS  Google Scholar 

  16. Bakheet SM, Hassounah M, Al-Watban J, Homsi M, Powe J, Larsson S (1999) F-18 FDG PET scan of a metastatic pineoblastoma. Clin Nucl Med 24(3):198–199

    Article  PubMed  CAS  Google Scholar 

  17. Park SA, Kim TY, Choi SS, Yang CY, Kim HS, Choi KH (2012) (1)(8)F-FDG PET/CT imaging for mixed germ cell tumor in the pineal region. Clin Nucl Med 37(3):e61–e63. doi:10.1097/RLU.0b013e31823926fc

    Article  PubMed  Google Scholar 

  18. Carrasco JL, Jover L (2003) Estimating the generalized concordance correlation coefficient through variance components. Biometrics 59(4):849–858

    Article  PubMed  Google Scholar 

  19. Busing KA, Kilian AK, Schaible T, Debus A, Weiss C, Neff KW (2008) Reliability and validity of MR image lung volume measurement in fetuses with congenital diaphragmatic hernia and in vitro lung models. Radiology 246(2):553–561. doi:10.1148/radiol.2462062166

    Article  PubMed  Google Scholar 

  20. Dumrongpisutikul N, Intrapiromkul J, Yousem DM (2012) Distinguishing between germinomas and pineal cell tumors on MR imaging. AJNR Am J Neuroradiol 33(3):550–555. doi:10.3174/ajnr.A2806

    Article  PubMed  CAS  Google Scholar 

  21. Sasaki M, Yamada K, Watanabe Y, Matsui M, Ida M, Fujiwara S, Shibata E, Acute Stroke Imaging Standardization Group-Japan (ASIST-Japan) Investigators (2008) Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 249(2):624–630. doi:10.1148/radiol.2492071681

    Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohisa Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakigi, T., Okada, T., Kanagaki, M. et al. Quantitative imaging values of CT, MR, and FDG-PET to differentiate pineal parenchymal tumors and germinomas: are they useful?. Neuroradiology 56, 297–303 (2014). https://doi.org/10.1007/s00234-014-1334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1334-2

Keywords

Navigation