Skip to main content

Advertisement

Log in

Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Radiomics is an emerging field that involves extraction and quantification of features from medical images. These data can be mined through computational analysis and models to identify predictive image biomarkers that characterize intra-tumoral dynamics throughout the course of treatment. This is particularly difficult in gliomas, where heterogeneity has been well established at a molecular level as well as visually in conventional imaging. Thus, acquiring clinically useful features remains difficult due to temporal variations in tumor dynamics. Identifying surrogate biomarkers through radiomics may provide a non-invasive means of characterizing biologic activities of gliomas. We present an extensive literature review of radiomics-based analysis, with a particular focus on computational modeling, machine learning, and fractal-based analysis in improving differential diagnosis and predicting clinical outcomes. Novel strategies in extracting quantitative features, segmentation methods, and their clinical applications are producing promising results. Moreover, we provide a detailed summary of the morphometric parameters that have so far been proposed as a means of quantifying imaging characteristics of gliomas. Newly emerging radiomic techniques via machine learning and fractal-based analyses holds considerable potential for improving diagnostic and prognostic accuracy of gliomas.

Key points

• Radiomic features can be mined through computational analysis to produce quantitative imaging biomarkers that characterize intra-tumoral dynamics throughout the course of treatment.

• Surrogate image biomarkers identified through radiomics could enable a non-invasive means of characterizing biologic activities of gliomas.

• With novel analytic algorithms, quantification of morphological or sub-regional tumor features to predict survival outcomes is producing promising results.

• Quantifying intra-tumoral heterogeneity may improve grading and molecular sub-classifications of gliomas.

• Computational fractal-based analysis of gliomas allows geometrical evaluation of tumor irregularities and complexity, leading to novel techniques for tumor segmentation, grading, and therapeutic monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  2. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA (2017) Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J Magn Reson Imaging 46(1):115–123. https://doi.org/10.1002/jmri.25497

    Article  PubMed  Google Scholar 

  4. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD Jr, Scarpace L, Mikkelsen T, Jain R, Wintermark M, Jilwan M, Raghavan P, Huang E, Clifford RJ, Mongkolwat P, Kleper V, Freymann J, Kirby J, Zinn PO, Moreno CS, Jaffe C, Colen R, Rubin DL, Saltz J, Flanders A, Brat DJ (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2):560–569. https://doi.org/10.1148/radiol.13120118

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kotrotsou A, Zinn PO, Colen RR (2016) Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn Reson Imaging Clin N Am 24(4):719–729. https://doi.org/10.1016/j.mric.2016.06.006

    Article  PubMed  Google Scholar 

  6. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  7. Bredel M, Scholtens DM, Harsh GR, Bredel C, Chandler JP, Renfrow JJ, Yadav AK, Vogel H, Scheck AC, Tibshirani R, Sikic BI (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302(3):261–275. https://doi.org/10.1001/jama.2009.997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones David TW, Konermann C, Pfaff E, Tönjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu X-Y, Fontebasso Adam M, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann Martin U, van Meter T, Frühwald Michael C, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, Dürken M, Kulozik Andreas E, Madden J, Donson A, Foreman Nicholas K, Drissi R, Fouladi M, Scheurlen W, von Deimling A, Monoranu C, Roggendorf W, Herold-Mende C, Unterberg A, Kramm Christof M, Felsberg J, Hartmann C, Wiestler B, Wick W, Milde T, Witt O, Lindroth Anders M, Schwartzentruber J, Faury D, Fleming A, Zakrzewska M, Liberski Pawel P, Zakrzewski K, Hauser P, Garami M, Klekner A, Bognar L, Morrissy S, Cavalli F, Taylor Michael D, van Sluis P, Koster J, Versteeg R, Volckmann R, Mikkelsen T, Aldape K, Reifenberger G, Collins VP, Majewski J, Korshunov A, Lichter P, Plass C, Jabado N, Pfister Stefan M (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437. https://doi.org/10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  9. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. https://doi.org/10.1056/NEJMoa0808710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K, Delattre J-Y (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27(25):4150–4154. https://doi.org/10.1200/JCO.2009.21.9832

    Article  CAS  PubMed  Google Scholar 

  11. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, Pekmezci M, Rice T, Kosel ML, Smirnov IV, Sarkar G, Caron AA, Kollmeyer TM, Praska CE, Chada AR, Halder C, Hansen HM, McCoy LS, Bracci PM, Marshall R, Zheng S, Reis GF, Pico AR, O’Neill BP, Buckner JC, Giannini C, Huse JT, Perry A, Tihan T, Berger MS, Chang SM, Prados MD, Wiemels J, Wiencke JK, Wrensch MR, Jenkins RB (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508. https://doi.org/10.1056/NEJMoa1407279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, Flynn H, Passe S, Felten S, Brown PD, Shaw EG, Buckner JC (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66(20):9852–9861. https://doi.org/10.1158/0008-5472.CAN-06-1796

    Article  CAS  PubMed  Google Scholar 

  13. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199. https://doi.org/10.1200/JCO.2007.11.5964

    Article  CAS  PubMed  Google Scholar 

  14. Delfanti RL, Piccioni DE, Handwerker J, Bahrami N, Krishnan A, Karunamuni R, Hattangadi-Gluth JA, Seibert TM, Srikant A, Jones KA, Snyder VS, Dale AM, White NS, McDonald CR, Farid N (2017) Imaging correlates for the 2016 update on WHO classification of grade II/III gliomas: implications for IDH, 1p/19q and ATRX status. J Neuro-Oncol 135(3):601–609. https://doi.org/10.1007/s11060-017-2613-7

    Article  CAS  Google Scholar 

  15. Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M, Berger MS, Stokoe D (2005) Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. JNCI: J Natl Cancer Instit 97(12):880–887. https://doi.org/10.1093/jnci/dji161

    Article  CAS  Google Scholar 

  16. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RGW, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. https://doi.org/10.1016/j.ccr.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raab SS, Grzybicki DM, Janosky JE, Zarbo RJ, Meier FA, Jensen C, Geyer SJ (2005) Clinical impact and frequency of anatomic pathology errors in cancer diagnoses. Cancer 104(10):2205–2213. https://doi.org/10.1002/cncr.21431

    Article  PubMed  Google Scholar 

  18. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. https://doi.org/10.1056/NEJMoa1113205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Friedmann-Morvinski D (2014) Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog 19(5):327–336. https://doi.org/10.1615/critrevoncog.2014011777

    Article  PubMed  Google Scholar 

  20. Inda MM, Bonavia R, Seoane J (2014) Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers (Basel) 6(1):226–239. https://doi.org/10.3390/cancers6010226

    Article  CAS  Google Scholar 

  21. Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, Steinberg GK, Cheshier SH, Napel S, Zaharchuk G, Plevritis SK (2014) Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1):168–174. https://doi.org/10.1148/radiol.14131731

    Article  PubMed  Google Scholar 

  22. Zinn PO, Mahajan B, Sathyan P, Singh SK, Majumder S, Jolesz FA, Colen RR (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 6(10):e25451. https://doi.org/10.1371/journal.pone.0025451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  24. Djuricic GJ, Radulovic M, Sopta JP, Nikitovic M, Milosevic NT (2017) Fractal and gray level cooccurrence matrix computational analysis of primary osteosarcoma magnetic resonance images predicts the chemotherapy response. Front Oncol 7:246. https://doi.org/10.3389/fonc.2017.00246

    Article  PubMed  PubMed Central  Google Scholar 

  25. Parekh V, Jacobs MA (2016) Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev 1(2):207–226. https://doi.org/10.1080/23808993.2016.1164013

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features of image classification. IEEE Trans Syst Man Cybern 3(6):610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  27. Czarnek N, Clark K, Peters KB, Mazurowski MA (2017) Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. J Neuro-Oncol 132(1):55–62. https://doi.org/10.1007/s11060-016-2359-7

    Article  Google Scholar 

  28. Mazurowski MA, Czarnek NM, Collins LM, Peters KB, Clark K (2016) Predicting outcomes in glioblastoma patients using computerized analysis of tumor shape - preliminary data. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. https://doi.org/10.1117/12.2217098

  29. Ditmer A, Zhang B, Shujaat T, Pavlina A, Luibrand N, Gaskill-Shipley M, Vagal A (2018) Diagnostic accuracy of MRI texture analysis for grading gliomas. J Neuro-Oncol 140(3):583–589. https://doi.org/10.1007/s11060-018-2984-4

    Article  Google Scholar 

  30. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graphics Image Process 4(2):172–179. https://doi.org/10.1016/S0146-664X(75)800086

    Article  Google Scholar 

  31. Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19(5):1264–1274. https://doi.org/10.1109/21.44046

    Article  Google Scholar 

  32. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, vol 24. vol 7 %. J IEEE Trans Pattern Anal Mach. Intell. IEEE Computer Society. https://doi.org/10.1109/tpami.2002.1017623

  33. Ambrosini RD, Wang P, O'Dell WG (2010) Computer-aided detection of metastatic brain tumors using automated three-dimensional template matching. J Magn Reson Imaging 31(1):85–93. https://doi.org/10.1002/jmri.22009

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, 20–27 Sept. 1999. pp 1150–1157 vol.1152. https://doi.org/10.1109/ICCV.1999.790410

  35. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 20–25 June 2005. vol. 881. pp 886–893. https://doi.org/10.1109/CVPR.2005.177

  36. Mandelbrot BB, Freeman WH, Company (1983) The fractal geometry of nature. Henry Holt and Company

  37. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA (2013) Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist 20(4):403–417. https://doi.org/10.1177/1073858413513927

    Article  CAS  PubMed  Google Scholar 

  38. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martín-Landrove M (2013) Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist 21(1):30–43. https://doi.org/10.1177/1073858413513928

    Article  PubMed  Google Scholar 

  39. Smitha KA, Gupta AK, Jayasree RS (2015) Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma. Phys Med Biol 60(17):6937–6947. https://doi.org/10.1088/0031-9155/60/17/6937

    Article  CAS  PubMed  Google Scholar 

  40. Lim JS (1990) Two-dimensional signal and image processing. Prentice-Hall, Inc.

  41. Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education

  42. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006

    Article  CAS  PubMed  Google Scholar 

  43. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H (2017) Computational Radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472.Can-17-0339

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M (2018) Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2(1):36–36. https://doi.org/10.1186/s41747-018-0068-z

    Article  PubMed  PubMed Central  Google Scholar 

  45. Earnest F, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, Forbes GS, Axley PL (1988) Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 166(3):823–827. https://doi.org/10.1148/radiology.166.3.2829270

    Article  PubMed  Google Scholar 

  46. Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, Iv M, Ou Y, Kalpathy-Cramer J, Napel S, Gillies R, Gevaert O, Gatenby R (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. Am J Neuroradiol 39(2):208–216. https://doi.org/10.3174/ajnr.A5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269(1):8–15. https://doi.org/10.1148/radiol.13122697

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou M, Hall L, Goldgof D, Gillies R, Gatenby R (2013) Survival time prediction of patients with glioblastoma multiforme tumors using spatial distance measurement, vol 8670. SPIE Medical Imaging. SPIE

  49. Cao Y, Tsien CI, Nagesh V, Junck L, Ten Haken R, Ross BD, Chenevert TL, Lawrence TS (2006) Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT [corrected]. Int J Radiat Oncol Biol Phys 64(3):876–885. https://doi.org/10.1016/j.ijrobp.2005.09.001

    Article  PubMed  Google Scholar 

  50. Zhou M, Hall L, Goldgof D, Russo R, Balagurunathan Y, Gillies R, Gatenby R (2014) Radiologically defined ecological dynamics and clinical outcomes in glioblastoma multiforme: preliminary results. Transl Oncol 7(1):5–13. https://doi.org/10.1593/tlo.13730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang PD, Malone HR, Bowden SG, Chow DS, Gill BJA, Ung TH, Samanamud J, Englander ZK, Sonabend AM, Sheth SA, McKhann GM 2nd, Sisti MB, Schwartz LH, Lignelli A, Grinband J, Bruce JN, Canoll P (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 38(5):890–898. https://doi.org/10.3174/ajnr.A5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438. https://doi.org/10.1016/j.mri.2013.05.002

    Article  PubMed  Google Scholar 

  53. Gibbs P, Buckley DL, Blackband SJ, Horsman A (1996) Tumour volume determination from MR images by morphological segmentation. Phys Med Biol 41(11):2437–2446. https://doi.org/10.1088/0031-9155/41/11/014

    Article  CAS  PubMed  Google Scholar 

  54. Hojjatoleslami SA, Kittler J (1998) Region growing: a new approach. IEEE Trans Image Process 7(7):1079–1084. https://doi.org/10.1109/83.701170

    Article  CAS  PubMed  Google Scholar 

  55. Mie S, Lakare S, Ming W, Kaufman A, Nakajima M (2000) A gradient magnitude based region growing algorithm for accurate segmentation. In: Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 10–13 Sept. 2000. vol.443, pp 448–451. https://doi.org/10.1109/ICIP.2000.899432

  56. Dam E, Loog M, Letteboer M (2004) Integrating automatic and interactive brain tumor segmentation. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., 26–26 Aug. 2004. vol 793, pp 790–793. https://doi.org/10.1109/ICPR.2004.1334647

  57. Kannan SR (2008) A new segmentation system for brain MR images based on fuzzy techniques. Appl Soft Comput 8(4):1599–1606. https://doi.org/10.1016/j.asoc.2007.10.025

    Article  Google Scholar 

  58. Iftekharuddin KM, Zheng J, Islam MA, Ogg RJ (2009) Fractal-based brain tumor detection in multimodal MRI. Appl Math Comput 207(1):23–41. https://doi.org/10.1016/j.amc.2007.10.063

    Article  Google Scholar 

  59. Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, Lladó X (2019) Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med 95:64–81. https://doi.org/10.1016/j.artmed.2018.08.008

    Article  PubMed  Google Scholar 

  60. Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS. pp 36–39

  61. Brébisson Ad, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 7–12 June 2015. pp 20–28. https://doi.org/10.1109/CVPRW.2015.7301312

  62. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31. https://doi.org/10.1016/j.media.2016.05.004

    Article  PubMed  Google Scholar 

  63. Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224. https://doi.org/10.1016/j.neuroimage.2014.12.061

    Article  PubMed  Google Scholar 

  64. Lyksborg M, Puonti O, Agn M, Larsen R (2015) An ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen RR, Pedersen KS (eds) Image Analysis, Cham, 2015. Springer International Publishing, p 201–211

  65. Li W, Wang G, Fidon L, Ourselin S, Cardoso MJ, Vercauteren T (2017) On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer M, Styner M, Aylward S, et al (eds) Information Processing in Medical Imaging, Cham, 2017. Springer International Publishing, p 348–360

  66. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78. https://doi.org/10.1016/j.media.2016.10.004

    Article  PubMed  Google Scholar 

  67. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108. https://doi.org/10.1016/S1361-8415(96)80007-7

    Article  CAS  PubMed  Google Scholar 

  68. Wu Y, Zhao Z, Wu W, Lin Y, Wang M (2019) Automatic glioma segmentation based on adaptive superpixel. BMC Med Imaging 19(1):73. https://doi.org/10.1186/s12880-019-0369-6

    Article  PubMed  PubMed Central  Google Scholar 

  69. Madabhushi A, Udupa JK (2006) New methods of MR image intensity standardization via generalized scale. Med Phys 33(9):3426–3434. https://doi.org/10.1118/1.2335487

    Article  PubMed  Google Scholar 

  70. Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M (2012) Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg 77(5-6):785.e711–785.e721. https://doi.org/10.1016/j.wneu.2011.09.006

    Article  Google Scholar 

  71. Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110(10):4009–4014. https://doi.org/10.1073/pnas.1219747110

    Article  PubMed  PubMed Central  Google Scholar 

  72. Georgiadis P, Cavouras D, Kalatzis I, Glotsos D, Athanasiadis E, Kostopoulos S, Sifaki K, Malamas M, Nikiforidis G, Solomou E (2009) Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Magn Reson Imaging 27(1):120–130. https://doi.org/10.1016/j.mri.2008.05.017

    Article  PubMed  Google Scholar 

  73. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42(11):6725–6735. https://doi.org/10.1118/1.4934373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Molina D, Perez-Beteta J, Luque B, Arregui E, Calvo M, Borras JM, Lopez C, Martino J, Velasquez C, Asenjo B, Benavides M, Herruzo I, Martinez-Gonzalez A, Perez-Romasanta L, Arana E, Perez-Garcia VM (2016) Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival. Br J Radiol 89(1064):20160242. https://doi.org/10.1259/bjr.20160242

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chang K, Zhang B, Guo X, Zong M, Rahman R, Sanchez D, Winder N, Reardon DA, Zhao B, Wen PY, Huang RY (2016) Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro-Oncology 18(12):1680–1687. https://doi.org/10.1093/neuonc/now086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sanghani P, Ang BT, King NKK, Ren H (2018) Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Surg Oncol 27(4):709–714. https://doi.org/10.1016/j.suronc.2018.09.002

    Article  PubMed  Google Scholar 

  77. Lao J, Chen Y, Li Z-C, Li Q, Zhang J, Liu J, Zhai G (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 7(1):10353. https://doi.org/10.1038/s41598-017-10649-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Q, Bai H, Chen Y, Sun Q, Liu L, Zhou S, Wang G, Liang C, Li Z-C (2017) A fully-automatic multiparametric radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma multiforme. Sci Rep 7(1):14331. https://doi.org/10.1038/s41598-017-14753-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol 27(10):4188–4197. https://doi.org/10.1007/s00330-016-4637-3

    Article  PubMed  Google Scholar 

  80. Bahrami N, Piccioni D, Karunamuni R, Chang YH, White N, Delfanti R, Seibert TM, Hattangadi-Gluth JA, Dale A, Farid N, McDonald CR (2018) Edge contrast of the FLAIR hyperintense region predicts survival in patients with high-grade gliomas following treatment with bevacizumab. AJNR Am J Neuroradiol 39(6):1017–1024. https://doi.org/10.3174/ajnr.A5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bisdas S, Shen HC, Thust S, Katsaros V, Stranjalis G, Boskos C, Brandner S, Zhang JG (2018) Texture analysis- and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study Scientific Reports 8. https://doi.org/10.1038/s41598-018-24438-4

  82. Bae S, Choi YS, Ahn SS, Chang JH, Kang SG, Kim EH, Kim SH, Lee SK (2018) Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289(3):797–806. https://doi.org/10.1148/radiol.2018180200

    Article  PubMed  Google Scholar 

  83. Bahrami N, Hartman SJ, Chang YH, Delfanti R, White NS, Karunamuni R, Seibert TM, Dale AM, Hattangadi-Gluth JA, Piccioni D, Farid N, McDonald CR (2018) Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics. J Neuro-Oncol 139(3):633–642. https://doi.org/10.1007/s11060-018-2908-3

    Article  CAS  Google Scholar 

  84. Chaddad A, Sabri S, Niazi T, Abdulkarim B (2018) Prediction of survival with multi-scale radiomic analysis in glioblastoma patients. Med Biol Eng Comput 56(12):2287–2300. https://doi.org/10.1007/s11517-018-1858-4

    Article  PubMed  Google Scholar 

  85. Darbar A, Waqas M, Enam SF, Mahmood SD (2018) Use of preoperative apparent diffusion coefficients to predict brain tumor grade. Cureus 10(3):e2284. https://doi.org/10.7759/cureus.2284

    Article  PubMed  PubMed Central  Google Scholar 

  86. Osman AFI (2019) A multi-parametric MRI-based radiomics signature and a practical ML model for stratifying glioblastoma patients based on survival toward precision oncology. Front Comput Neurosci 13:58. https://doi.org/10.3389/fncom.2019.00058

    Article  PubMed  PubMed Central  Google Scholar 

  87. Petrujkic K, Milosevic N, Rajkovic N, Stanisavljevic D, Gavrilovic S, Dzelebdzic D, Ilic R, Di Ieva A, Maksimovic R (2019) Computational quantitative MR image features - a potential useful tool in differentiating glioblastoma from solitary brain metastasis. Eur J Radiol 119:108634. https://doi.org/10.1016/j.ejrad.2019.08.003

    Article  PubMed  Google Scholar 

  88. Yang Y, Yan LF, Zhang X, Nan HY, Hu YC, Han Y, Zhang J, Liu ZC, Sun YZ, Tian Q, Yu Y, Sun Q, Wang SY, Zhang X, Wang W, Cui GB (2019) Optimizing texture retrieving model for multimodal MR image-based support vector machine for classifying glioma. J Magn Reson Imaging 49(5):1263–1274. https://doi.org/10.1002/jmri.26524

    Article  PubMed  Google Scholar 

  89. Schoenegger K, Oberndorfer S, Wuschitz B, Struhal W, Hainfellner J, Prayer D, Heinzl H, Lahrmann H, Marosi C, Grisold W (2009) Peritumoral edema on MRI at initial diagnosis: an independent prognostic factor for glioblastoma? Eur J Neurol 16(7):874–878. https://doi.org/10.1111/j.1468-1331.2009.02613.x

    Article  CAS  PubMed  Google Scholar 

  90. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon I, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198. https://doi.org/10.3171/jns.2001.95.2.0190

    Article  CAS  PubMed  Google Scholar 

  91. Skogen K, Schulz A, Dormagen JB, Ganeshan B, Helseth E, Server A (2016) Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol 85(4):824–829. https://doi.org/10.1016/j.ejrad.2016.01.013

    Article  PubMed  Google Scholar 

  92. Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, Bi Y, Pal S, Davuluri RV, Roccograndi L, Dahmane N, Martinez-Lage M, Biros G, Wolf RL, Bilello M, O'Rourke DM, Davatzikos C (2016) Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 18(3):417–425. https://doi.org/10.1093/neuonc/nov127

    Article  PubMed  Google Scholar 

  93. Lahmiri S, Boukadoum M (2012) Automatic brain MR images diagnosis based on edge fractal dimension and spectral energy signature. Conf Proc IEEE Eng Med Biol Soc 2012:6243–6246. https://doi.org/10.1109/embc.2012.6347421

    Article  Google Scholar 

  94. Lahmiri S, Boukadoum M, Di Ieva A (2014) Detrended fluctuation analysis of brain hemisphere magnetic resonnance images to detect cerebral arteriovenousmalformations. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 June 2014. pp 2409–2412 https://doi.org/10.1109/ISCAS.2014.6865658

  95. Lahmiri S, Boukadoum M (2013) Automatic detection of Alzheimer disease in brain magnetic resonance images using fractal features. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), 6–8 Nov. 2013. p 1505–1508. https://doi.org/10.1109/NER.2013.6696231

  96. Di Ieva A (Ed.) (2016) The fractal geometry of the brain. Springer, New York

  97. Iftekharuddin KM, Jia W, Marsh R (2003) Fractal analysis of tumor in brain MR images. Mach Vis Appl 13(5):352–362. https://doi.org/10.1007/s00138-002-0087-9

    Article  Google Scholar 

  98. Zook JM, Iftekharuddin KM (2005) Statistical analysis of fractal-based brain tumor detection algorithms. Magn Reson Imaging 23(5):671–678. https://doi.org/10.1016/j.mri.2005.04.002

    Article  PubMed  Google Scholar 

  99. Di Ieva A, Göd S, Grabner G, Grizzi F, Sherif C, Matula C, Tschabitscher M, Trattnig S (2013) Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology 55(1):35–40. https://doi.org/10.1007/s00234-012-1081-1

    Article  PubMed  Google Scholar 

  100. Kristin RS, Alvord EC, Murray JD (2003) Dynamics of a model for brain tumors reveals a small window for therapeutic intervention. Discrete Contin Dynam Syst B 4(1):289–295. https://doi.org/10.3934/dcdsb.2004.4.289

    Article  Google Scholar 

  101. Sedivy R (1996) Fractal tumours: their real and virtual images. Wien Klin Wochenschr 108(17):547–551

    CAS  PubMed  Google Scholar 

  102. Di Ieva A (2010) Angioarchitectural morphometrics of brain tumors: are there any potential histopathological biomarkers? Microvasc Res 80(3):522–533. https://doi.org/10.1016/j.mvr.2010.09.005

    Article  PubMed  Google Scholar 

  103. Di Ieva A, Grizzi F, Ceva-Grimaldi G, Russo C, Gaetani P, Aimar E, Levi D, Pisano P, Tancioni F, Nicola G, Tschabitscher M, Dioguardi N, Baena RRY (2007) Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue. J Anat 211(5):673–680. https://doi.org/10.1111/j.1469-7580.2007.00804.x

    Article  PubMed  PubMed Central  Google Scholar 

  104. Di Ieva A, Grizzi F, Gaetani P, Goglia U, Tschabitscher M, Mortini P, Rodriguez y Baena R (2008) Euclidean and fractal geometry of microvascular networks in normal and neoplastic pituitary tissue. Neurosurg Rev 31(3):271–281. https://doi.org/10.1007/s10143-008-01277

    Article  PubMed  Google Scholar 

  105. Di Ieva A, Grizzi F, Tschabitscher M, Colombo P, Casali M, Simonelli M, Widhalm G, Muzzio PC, Matula C, Chiti A, Rodriguez y Baena R (2010) Correlation of microvascular fractal dimension with positron emission tomography [(11)C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res 80(2):267–273. https://doi.org/10.1016/j.mvr.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  106. Di Ieva A, Bruner E, Widhalm G, Minchev G, Tschabitscher M, Grizzi F (2012) Computer-assisted and fractal-based morphometric assessment of microvascularity in histological specimens of gliomas. Sci Rep 2(1):429. https://doi.org/10.1038/srep00429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G (2014) Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff 33(7):1123–1131. https://doi.org/10.1377/hlthaff.2014.0041

    Article  Google Scholar 

  108. Abrol S, Kotrotsou A, Salem A, Zinn PO, Colen RR (2017) Radiomic phenotyping in brain cancer to unravel hidden information in medical images. Top Magn Reson Imaging 26(1):43–53. https://doi.org/10.1097/rmr.0000000000000117

    Article  PubMed  Google Scholar 

  109. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  110. Prior FW, Clark K, Commean P, Freymann J, Jaffe C, Kirby J, Moore S, Smith K, Tarbox L, Vendt B, Marquez G (2013) TCIA: an information resource to enable open science. Conf Proc IEEE Eng Med Biol Soc 2013:1282–1285. https://doi.org/10.1109/embc.2013.6609742

    Article  PubMed Central  Google Scholar 

  111. Kalpathy-Cramer J, Freymann JB, Kirby JS, Kinahan PE, Prior FW (2014) Quantitative imaging network: data sharing and competitive algorithmvalidation leveraging the cancer imaging archive. Transl Oncol 7(1):147–152. https://doi.org/10.1593/tlo.13862

    Article  PubMed  PubMed Central  Google Scholar 

  112. Heilbrun ME (2013) Evaluating RadLex and real world radiology reporting: are we there yet? Acad Radiol 20(11):1327–1328. https://doi.org/10.1016/j.acra.2013.09.011

    Article  PubMed  Google Scholar 

  113. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 58(1):267–288

    Google Scholar 

  114. Gevaert O, Xu J, Hoang CD, Leung AN, Xu Y, Quon A, Rubin DL, Napel S, Plevritis SK (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. Radiology 264(2):387–396. https://doi.org/10.1148/radiol.12111607

    Article  PubMed  PubMed Central  Google Scholar 

  115. Shen W, Zhou M, Yang F, Dong D, Yang C, Zang Y, Tian J (2016) Learning from experts: developing transferable deep features for patient-level lung cancer prediction. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Cham, 2016. Springer International Publishing, p 124–131

  116. Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharm 13(5):1445–1454. https://doi.org/10.1021/acs.molpharmaceut.5b00982

    Article  CAS  PubMed  Google Scholar 

  117. Chu HH, Choi SH, Ryoo I, Kim SC, Yeom JA, Shin H, Jung SC, Lee AL, Yoon TJ, Kim TM, Lee S-H, Park C-K, Kim J-H, Sohn C-H, Park S-H, Kim IH (2013) Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 269(3):831–840. https://doi.org/10.1148/radiol.13122024

    Article  PubMed  Google Scholar 

  118. Chang PD, Chow DS, Yang PH, Filippi CG, Lignelli A (2017) Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 208(1):57–65. https://doi.org/10.2214/ajr.16.16234

    Article  PubMed  Google Scholar 

  119. Ellingson BM, Cloughesy TF, Lai A, Nghiemphu PL, Mischel PS, Pope WB (2011) Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro-Oncology 13(4):401–409. https://doi.org/10.1093/neuonc/noq206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhou M, Hall LO, Goldgof DB, Russo R, Gillies RJ, Gatenby RA (2015) Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. https://doi.org/10.1117/12.2075545

  121. Hygino da Cruz LC, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG (2011) Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. Am J Neuroradiol 32(11):1978–1985. https://doi.org/10.3174/ajnr.A2397

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wardlaw G, Wong R, Noseworthy MD (2008) Identification of intratumour low frequency microvascular components via BOLD signal fractal dimension mapping. Phys Med 24(2):87–91. https://doi.org/10.1016/j.ejmp.2008.01.006

    Article  PubMed  Google Scholar 

  123. Michallek F, Dewey M (2014) Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol 24(1):60–69. https://doi.org/10.1007/s00330-013-2977-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Professor Antonio Di Ieva received the 2019 John Mitchell Crouch Fellowship from the Royal Australasian College of Surgeons (RACS) which, along with Macquarie University co-funding, supported the opening of the Computational NeuroSurgery (CNS) Lab at Macquarie University, Sydney, Australia. Moreover, he is supported by an Australian Research Council (ARC) Future Fellowship (2019-2023, FT190100623). KJ would like to personally thank Professor Antonio Di Ieva, Dr. Carlo Russo, and Dr. Abhishta Bhandari for their untiring support during the course of this work. We also thank Dr. Bhandari for contributing to the figure used in this manuscript.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Ieva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, K., Russo, C. & Di Ieva, A. Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis. Neuroradiology 62, 771–790 (2020). https://doi.org/10.1007/s00234-020-02403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02403-1

Keywords

Navigation