Skip to main content

Advertisement

Log in

Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies

  • Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Gadolinium is a rare-earth lanthanide metal that is known to have a direct neurotoxic effect. The scope of the present review is to summarize the current preclinical and clinical evidence on the association between exposure to gadolinium of the central nervous system and neurotoxicity.

Methods

A literature review was performed by searching for original research papers investigating on gadolinium exposure and neurotoxicity.

Results

Gadolinium is neurotoxic through multiple mechanisms, mainly involving Ca++ homeostasis and mitochondrial functions, as shown by preclinical in vitro studies. The available evidence related to the four different classes of gadolinium-based contrast agents commonly applied in clinical practice (i.e., linear and macrocyclic based on ligand structure, and ionic and non-ionic based on their net molecular charge) suggests that serial intravenous injections of gadolinium-based contrast agents and gadolinium brain depositions are not associated to histological changes, as confirmed by preclinical animal and human (MR imaging and autopsy) studies.

Conclusion

To date, no cause-effect relationship has been demonstrated in patients between brain gadolinium exposure and clinical consequences specific to neurological toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

IL-1:

interleukin-1

TNFα:

tumor necrosis factor alpha

INFγ:

interferon gamma

ROS:

reactive oxygen species

Pb:

lead

Cd:

cadmium

Hg:

mercury

Ni:

nickel

Al:

aluminum

GBCAs:

gadolinium-based contrast agents

NSF:

nephrogenic systemic fibrosis

DN:

dentate nucleus

GP:

globus pallidus

CSF:

cerebrospinal fluid

BBB:

blood-brain barrier

ATP:

adenosine triphosphate

LDH:

lactate dehydrogenase

MS:

multiple sclerosis

EDSS:

expanded disability status scale

ADC:

apparent diffusion coefficient

FDA:

Food and Drug Administration

References

  1. Cunha-Oliveira T, Rego AC, Oliveira CR (2008) Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev 58:192–208

    CAS  PubMed  Google Scholar 

  2. Fulgenzi A, Ferrero ME (2019) EDTA chelation therapy for the treatment of neurotoxicity. Int J Mol Sci 20:E1019

    PubMed  Google Scholar 

  3. Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, Lee JM, Leiner T, Li KC, Nikolaou K, Prince MR, Schild HH, Weinreb JC, Yoshikawa K, Pietsch H (2016) 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 33:1–28

    PubMed  PubMed Central  Google Scholar 

  4. Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C. Investig Radiol 43:817–828

    CAS  Google Scholar 

  5. Dekkers IA, Roos R, van der Molen AJ (2018) Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European Medicines Agency. Eur Radiol 28:1579–1584

    PubMed  Google Scholar 

  6. Parizel PM, Degryse HR, Gheuens J, Martin JJ, Vyve MV, de la Porte C, Selosse P, de Heyning PV, de Schepper AM (1989) Gadolinium-DOTA enhanced MR imaging of intracranial lesions. J Comput Assist Tomogr 13:378–385

    CAS  PubMed  Google Scholar 

  7. Edward M, Quinn JA, Burden AD, Newton BB, Jardine AG (2010) Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology 256:735–743

    PubMed  Google Scholar 

  8. Arsenault TM, King BF, Wallis Marsh J et al (1996) Systemic gadolinium toxicity in patients with renal insufficiency and renal failure: retrospective analysis of an initial experience. Mayo Clin Proc 71:1150–1154

    CAS  PubMed  Google Scholar 

  9. Provenzano DA, Pellis Z, Deriggi L (2019) Fatal gadolinium-induced encephalopathy following accidental intrathecal administration: a case report and a comprehensive evidence-based review. Reg Anesth Pain Med 44:721–729

    Google Scholar 

  10. Quattrocchi CC, Mallio CA, Errante Y, Cirimele V, Carideo L, Ax A, Zobel BB (2015) Gadodiamide and dentate nucleus T1 hyperintensity in patients with meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy. Investig Radiol 50:470–472

    Google Scholar 

  11. Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J’, Haruyama T, Takeshita K, Furui S (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275:803–809

    PubMed  Google Scholar 

  12. Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W, Schlemmer HP, Bendszus M (2015) High-signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evaluation of the macrocyclic gadolinium-based contrast agent gadobutrol. Investig Radiol 50:805–810

    CAS  Google Scholar 

  13. Mallio CA, Ramalho J, Quattrocchi CC (2019) Impact of brain irradiation, chemotherapy, and presence of primary brain tumors on changes in signal intensity after exposure to gadolinium-based contrast agents. Radiology 290:575–576

    PubMed  Google Scholar 

  14. Quattrocchi CC, Errante Y, Mallio CA, Marinelli L, LoVullo G, Giannotti G, Della Sala SW, van der Molen AJ, Beomonte Zobel B (2018) Effect of age on high T1 signal intensity of the dentate nucleus and globus pallidus in a large population exposed to gadodiamide. Investig Radiol 53:214–222

    CAS  Google Scholar 

  15. McDonald RJ, McDonald JS, Kallmes DF et al (2017) Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology 285:546–554

    PubMed  Google Scholar 

  16. Mallio CA, Lo Vullo G, Messina L et al (2019) Increased T1 signal intensity of the anterior pituitary gland on unenhanced magnetic resonance images after chronic exposure to gadodiamide. Investig Radiol 55:25–29

    Google Scholar 

  17. Parillo M, Sapienza M, Arpaia F, Magnani F, Mallio CA, DʼAlessio P, Quattrocchi CC (2019) A structured survey on adverse events occurring within 24 hours after intravenous exposure to gadodiamide or gadoterate meglumine: a controlled prospective comparison study. Investig Radiol 54:191–197

    CAS  Google Scholar 

  18. Errante Y, Cirimele V, Mallio CA, di Lazzaro V, Zobel BB, Quattrocchi CC (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Investig Radiol 49:685–690

    CAS  Google Scholar 

  19. Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents—current status. Neuroradiology 58:433–441

    PubMed  Google Scholar 

  20. Taoka T, Naganawa S (2018) Gadolinium-based contrast media, cerebrospinal fluid and the glymphatic system: possible mechanisms for the deposition of gadolinium in the brain. Magn Reson Med Sci 17:111–119

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Deike-Hofmann K, Reuter J, Haase R, Paech D, Gnirs R, Bickelhaupt S, Forsting M, Heußel CP, Schlemmer HP, Radbruch A (2019) Glymphatic pathway of gadolinium-based contrast agents through the brain: overlooked and misinterpreted. Investig Radiol 54:229–237

    CAS  Google Scholar 

  22. Jost G, Frenzel T, Lohrke J, Lenhard DC, Naganawa S, Pietsch H (2017) Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol 27:2877–2885

    PubMed  Google Scholar 

  23. Aime S, Caravan P (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging 30:1259–1267

    PubMed  PubMed Central  Google Scholar 

  24. Sharonova IN, Dvorzhak AY, Vorobjov VS (2008) Gadolinium blocks proton-activated currents in isolated Purkinje cells. Bull Exp Biol Med 145:307–311

    CAS  PubMed  Google Scholar 

  25. Feng X, Xia Q, Yuan L, Yang X, Wang K (2010) Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadolinium-induced neurotoxicity. Neurotoxicology 31:391–398

    CAS  PubMed  Google Scholar 

  26. Xia Q, Feng X, Huang H, du L, Yang X, Wang K (2011) Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J Neurochem 117:38–47

    CAS  PubMed  Google Scholar 

  27. Feng XD, Xia Q, Yuan L, Huang HF, Yang XD, Wang K (2011) Gadolinium triggers unfolded protein responses (UPRs) in primary cultured rat cortical astrocytes via promotion of an influx of extracellular Ca 2+. Cell Biol Toxicol 27:1–12

    CAS  PubMed  Google Scholar 

  28. Ariyani W, Iwasaki T, Miyazaki W et al (2016) Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis. Front Endocrinol 7:115

    Google Scholar 

  29. Bower DV, Richter JK, von Tengg-Kobligk H, Heverhagen JT, Runge VM (2019) Gadolinium-based MRI contrast agents induce mitochondrial toxicity and cell death in human neurons, and toxicity increases with reduced kinetic stability of the agent. Investig Radiol 54:453–463

    CAS  Google Scholar 

  30. Legare ME, Barhoumi R, Hebert E, Bratton GR, Burghardt RC, Tiffany-Castiglioni E (1998) Analysis of Pb2+ entry into cultured astroglia. Toxicol Sci 46:90–100

    CAS  PubMed  Google Scholar 

  31. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    CAS  PubMed  Google Scholar 

  32. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624

    CAS  Google Scholar 

  33. Di Chiro G, Knop RH, Girton ME et al (1985) MR cisternography and myelography with Gd-DTPA in monkeys. Radiology 157:373–377

    PubMed  Google Scholar 

  34. Roman-Goldstein SM, Barnett PA, McCormick CI, Ball MJ, Ramsey F, Neuwelt EA (1991) Effects of gadopentetate dimeglumine administration after osmotic blood-brain barrier disruption: toxicity and MR imaging findings. Am J Neuroradiol 12:885–890

    CAS  PubMed  Google Scholar 

  35. Vogler H, Platzek J, Schuhmann-Giampieri G, Frenzel T, Weinmann HJ, Radüchel B, Press WR (1995) Pre-clinical evaluation of gadobutrol: a new, neutral, extracellular contrast agent for magnetic resonance imaging. Eur J Radiol 21:1–10

    CAS  PubMed  Google Scholar 

  36. Ray DE, Cavanagh JB, Nolan CC, Williams SCR (1996) Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats. Am J Neuroradiol 17:365–373

    CAS  PubMed  Google Scholar 

  37. Ray DE, Holton JL, Nolan CC, Cavanagh JB, Harpur ES (1998) Neurotoxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. Am J Neuroradiol 19:1455–1462

    CAS  PubMed  Google Scholar 

  38. Skalpe IO, Tang GJ (1997) Magnetic resonance imaging contrast media in the subarachnoid space: a comparison between gadodiamide injection and gadopentetate dimeglumine in an experimental study in pigs. Investig Radiol 32:140–148

    CAS  Google Scholar 

  39. Toney GM, Chavez HA, Ibarra R, Jinkins JR (2001) Acute and subacute physiological and histological studies of the central nervous system after intrathecal gadolinium injection in the anesthetized rat. Investig Radiol 36:33–40

    CAS  Google Scholar 

  40. Smith APL, Marino M, Roberts J, Crowder JM, Castle J, Lowery L, Morton C, Hibberd MG, Evans PM (2017) Clearance of gadolinium from the brain with no pathologic effect after repeated administration of gadodiamide in healthy rats: an analytical and histologic study. Radiology 282:743–751

    PubMed  Google Scholar 

  41. Lohrke J, Frisk AL, Frenzel T, Schöckel L, Rosenbruch M, Jost G, Lenhard DC, Sieber MA, Nischwitz V, Küppers A, Pietsch H (2017) Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Investig Radiol 52:324–333

    CAS  Google Scholar 

  42. El Hamrani D, Vives V, Buchholz R et al (2019) Effect of long-term retention of gadolinium on metabolism of deep cerebellar nuclei after repeated injections of gadodiamide in rats. Investig Radiol 55:120–128

    Google Scholar 

  43. McDonald RJ, Levine D, Weinreb J et al (2018) Gadolinium retention: a research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology 289:517–534

    PubMed  PubMed Central  Google Scholar 

  44. Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, Ramalho M (2016) Gadolinium deposition disease: initial description of a disease that has been around for a while. Magn Reson Imaging 34:1383–1390

    CAS  PubMed  Google Scholar 

  45. Welk B, McArthur E, Morrow SA, MacDonald P, Hayward J, Leung A, Lum A (2016) Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA - J Am Med Assoc 316:96–98

    Google Scholar 

  46. McDonald RJ (2017) No evidence gadolinium causes neurologic harm. RSNA 2017 Daily Bulletin. Accessed on January 14, 2020

  47. Perrotta G, Metens T, Absil J, Lemort M, Manto M (2017) Absence of clinical cerebellar syndrome after serial injections of more than 20 doses of gadoterate, a macrocyclic GBCA: a monocenter retrospective study. J Neurol 264:2277–2283

    CAS  PubMed  Google Scholar 

  48. Cocozza S, Pontillo G, Lanzillo R, Russo C, Petracca M, di Stasi M, Paolella C, Vola EA, Criscuolo C, Moccia M, Lamberti A, Monti S, Brescia Morra V, Elefante A, Palma G, Tedeschi E, Brunetti A (2019) MRI features suggestive of gadolinium retention do not correlate with expanded disability status scale worsening in multiple sclerosis. Neuroradiology 61:155–162

    PubMed  Google Scholar 

  49. Mallio CA, Piervincenzi C, Gianolio E, Cirimele V, Papparella LG, Marano M, Quintiliani L, Aime S, Carducci F, Parizel PM, Quattrocchi CC (2019) Absence of dentate nucleus resting-state functional connectivity changes in nonneurological patients with gadolinium-related hyperintensity on T1-weighted images. J Magn Reson Imaging 50:445–455

    PubMed  Google Scholar 

  50. Zivadinov R, Bergsland N, Hagemeier J, Ramasamy DP, Dwyer MG, Schweser F, Kolb C, Weinstock-Guttman B, Hojnacki D (2019) Cumulative gadodiamide administration leads to brain gadolinium deposition in early MS. Neurology 93:e611–e623

    CAS  PubMed  Google Scholar 

  51. Vymazal J, Krámská L, Brožová H, Růžička E, Rulseh AM (2019) Does serial administration of gadolinium-based contrast agents affect patient neurological and neuropsychological status? Fourteen-year follow-up of patients receiving more than fifty contrast administrations. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26948

  52. Forslin Y, Shams S, Hashim F, Aspelin P, Bergendal G, Martola J, Fredrikson S, Kristoffersen-Wiberg M, Granberg T (2017) Retention of gadolinium-based contrast agents in multiple sclerosis: retrospective analysis of an 18-year longitudinal study. Am J Neuroradiol 38:1311–1316

    CAS  PubMed  Google Scholar 

  53. Forslin Y, Martola J, Bergendal Å, Fredrikson S, Wiberg MK, Granberg T (2019) Gadolinium retention in the brain: an MRI relaxometry study of linear and macrocyclic gadolinium-based contrast agents in multiple sclerosis. Am J Neuroradiol 40:1265–1273

    CAS  PubMed  Google Scholar 

  54. Eisele P, Szabo K, Ebert A, Radbruch A, Platten M, Schoenberg SO, Gass A (2019) Diffusion-weighted imaging of the dentate nucleus after repeated application of gadolinium-based contrast agents in multiple sclerosis. Magn Reson Imaging 58:1–5

    CAS  PubMed  Google Scholar 

  55. Eisele P, Konstandin S, Szabo K, Ong M, Zöllner F, Schad LR, Schoenberg SO, Gass A (2017) Sodium MRI of T1 high signal intensity in the dentate nucleus due to gadolinium deposition in multiple sclerosis. J Neuroimaging 27:372–375

    PubMed  Google Scholar 

  56. Mallio CA, Piervincenzi C, Carducci F, Quintiliani L, Parizel PM, Pantano P, Quattrocchi CC (2020) Within-network brain connectivity in Crohn’s disease patients with gadolinium deposition in the cerebellum. Neuroradiology. https://doi.org/10.1007/s00234-020-02415-x

  57. Young LK, Matthew SZ, Houston JG (2019) Absence of potential gadolinium toxicity symptoms following 22,897 gadoteric acid (Dotarem®) examinations, including 3,209 performed on renally insufficient individuals. Eur Radiol 29:1922–1930

    PubMed  Google Scholar 

  58. McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782

    PubMed  Google Scholar 

  59. Fingerhut S, Sperling M, Holling M, Niederstadt T, Allkemper T, Radbruch A, Heindel W, Paulus W, Jeibmann A, Karst U (2018) Gadolinium-based contrast agents induce gadolinium deposits in cerebral vessel walls, while the neuropil is not affected: an autopsy study. Acta Neuropathol 136:127–138

    CAS  PubMed  Google Scholar 

  60. Popescu A, Patel J, McCormick ZL et al (2018) Fact finders for patient safety: are gadolinium-based contrast media safe alternatives to iodinated contrast agents for the safe performance of spinal injection procedures? Pain Med 19:2089–2090

    PubMed  Google Scholar 

  61. Safriel Y, Ali M, Hayt M, Ang R (2006) Gadolinium use in spine procedures for patients with allergy to iodinated contrast - experience of 127 procedures. Am J Neuroradiol 27:1194–1197

    CAS  PubMed  Google Scholar 

  62. Edeklev CS, Halvorsen M, Løvland G, Vatnehol SAS, Gjertsen Ø, Nedregaard B, Sletteberg R, Ringstad G, Eide PK (2019) Intrathecal use of gadobutrol for glymphatic MR imaging: prospective safety study of 100 patients. Am J Neuroradiol 40:1257–1264

    CAS  PubMed  Google Scholar 

  63. Zeng Q, Xiong L, Jinkins JR, Fan Z, Liu Z (1999) Intrathecal gadolinium-enhanced MR myelography and cisternography: a pilot study in human patients. Am J Roentgenol 173:1109–1115

    CAS  Google Scholar 

  64. Albayram S, Kilic F, Ozer H, Baghaki S, Kocer N, Islak C (2008) Gadolinium-enhanced MR cisternography to evaluate dural leaks in intracranial hypotension syndrome. Am J Neuroradiol 29:116–121

    CAS  PubMed  Google Scholar 

  65. Öner AY, Barutcu B, Aykol Ş, Tali ET (2017) Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes: residual gadolinium deposition? Investig Radiol 52:195–197

    Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of our wonderful colleague, Dr. Marco Sarà, who recently passed away.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo A. Mallio.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Ethical approval

NA

Informed consent

NA

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is endorsed by the ESMRMB-GREC working group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallio, C.A., Rovira, À., Parizel, P.M. et al. Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies. Neuroradiology 62, 925–934 (2020). https://doi.org/10.1007/s00234-020-02434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02434-8

Keywords

Navigation