Skip to main content
Log in

Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Current clinical studies involve multidimensional high-resolution images containing an overwhelming amount of structural and functional information. The analysis of such a wealth of information is becoming increasingly difficult yet necessary in order to improve diagnosis, treatment and healthcare. Voxel-wise analysis is a class of modern methods of image processing in the medical field with increased popularity. It has replaced manual region of interest (ROI) analysis and has provided tools to make statistical inferences at voxel level. The introduction of voxel-based analysis software in all modern commercial scanners allows clinical use of these techniques. This review will explain the main principles, advantages and disadvantages behind these methods of image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dammann F (2002) Image processing in radiology. Rofo 174:541–550

    PubMed  CAS  Google Scholar 

  2. Tofts P (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease, 1st edn. Wiley, West Sussex

    Google Scholar 

  3. Iavindrasana J, Cohen G, Depeursinge A et al (2009) Clinical data mining: a review. Yearb Med Inform 2009:121–133

  4. Reiner BI, Siegel EL (2009) The clinical imperative of medical imaging informatics. J Digit Imaging 22:345–347

    Article  PubMed  Google Scholar 

  5. Evidence-Based Radiology Working Group (2001) Evidence-based radiology: a new approach to the practice of radiology. Radiology 220:566–575

    Article  Google Scholar 

  6. Thrall JH (2004) Personalized medicine. Radiology 231:613–616

    Article  PubMed  Google Scholar 

  7. Boone JM (2007) Radiological interpretation 2020: toward quantitative image assessment. Med Phys 34:4173–4179

    Article  PubMed  Google Scholar 

  8. Sullivan DC (2008) Imaging as a quantitative science. Radiology 248:328–332

    Article  PubMed  Google Scholar 

  9. Dhawan AP, Huang HK, Kim DS (eds) (2008) Principles and advanced methods in medical imaging and image analysis, 1st edn. World Scientific, Singapore

    Google Scholar 

  10. Seeram E (2004) Digital image processing. Radiol Technol 75:435–452, quiz 453–435

    PubMed  Google Scholar 

  11. Xydis V, Astrakas L, Drougia A et al (2006) Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio. Pediatr Radiol 36:934–939

    Article  PubMed  Google Scholar 

  12. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337

    Article  PubMed  CAS  Google Scholar 

  13. Jain R, Kasturi R, Schunck BG (1995) Introduction to machine vision, 2nd edn. McGraw Hill, New York

    Google Scholar 

  14. Gonzalez RC, Woods RE (2001) Digital Image Processing. Prentice Hall, New Jersey

  15. Bankman IN (ed) (2000) Handbook of medical imaging: processing and analysis management. Academic, San Diego

    Google Scholar 

  16. Olabarriaga SD, Smeulders AW (2001) Interaction in the segmentation of medical images: a survey. Med Image Anal 5:127–142

    Article  PubMed  CAS  Google Scholar 

  17. Young R, Babb J, Law M et al (2007) Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 26:1053–1063

    Article  PubMed  Google Scholar 

  18. Law M, Young R, Babb J et al (2007) Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR 28:761–766

    PubMed  CAS  Google Scholar 

  19. Dehmeshki J, Ruto AC, Arridge S et al (2001) Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 46:600–609

    Article  PubMed  CAS  Google Scholar 

  20. Nusbaum AO, Tang CY, Buchsbaum MS et al (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR 22:136–142

    PubMed  CAS  Google Scholar 

  21. Yamamoto A, Miki Y, Adachi S et al (2006) Whole brain magnetization transfer histogram analysis of pediatric acute lymphoblastic leukemia patients receiving intrathecal methotrexate therapy. Eur J Radiol 57:423–427

    Article  PubMed  Google Scholar 

  22. Argyropoulou MI, Zikou AK, Tzovara I et al (2007) Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging. Eur Radiol 17:1669–1674

    Article  PubMed  Google Scholar 

  23. Mori N, Miki Y, Fushimi Y et al (2008) Cerebral infarction associated with moyamoya disease: histogram-based quantitative analysis of diffusion tensor imaging—a preliminary study. Magn Reson Imaging 26:835–840

    Article  PubMed  Google Scholar 

  24. Iannucci G, Tortorella C, Rovaris M et al (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR 21:1034–1038

    PubMed  CAS  Google Scholar 

  25. Frackowiak RSJ, Friston KJ, Frith C et al (eds) (2003) Human brain function, 2nd edn. Academic, San Diego

    Google Scholar 

  26. Henson R, Büchel C, Josephs O et al (1999) The slice-timing problem in event-related fMRI. NeuroImage 9:S125

    Google Scholar 

  27. Van de Moortele PF, Cerf B, Lobel E et al (1997) Latencies in fMRI time-series: effect of slice acquisition order and perception. NMR Biomed 10:230–236

    Article  PubMed  Google Scholar 

  28. Van de Moortele PF, Poline J-B, Paradis A-L et al (1998) Slice-dependent time shift efficiently corrected by interpolation in multi-slice EPI fMRI series. NeuroImage 7:S607

    Google Scholar 

  29. Friston KJ, Fletcher P, Josephs O et al (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40

    Article  PubMed  CAS  Google Scholar 

  30. Behrenbruch CP, Petroudi S, Bond S et al (2004) Image filtering techniques for medical image post-processing: an overview. Br J Radiol 77(Spec No 2):S126–S132

    Article  PubMed  Google Scholar 

  31. D’ Agostino RB (ed) (2004) Tutorials in biostatistics volume 2. Statistical modelling of complex medical data. Wiley, West Sussex

    Google Scholar 

  32. Friston KJ (2005) Models of brain function in neuroimaging. Annu Rev Psychol 56:57–87

    Article  PubMed  Google Scholar 

  33. Friston K, Ashburner J, Kiebel S et al (eds) (2006) Statistical parametric mapping. The analysis of functional brain images, 1st edn. Academic, San Diego

    Google Scholar 

  34. Friston KJ, Holmes AP, Poline JB et al (1995) Analysis of fMRI time-series revisited. Neuroimage 2:45–53

    Article  PubMed  CAS  Google Scholar 

  35. Carlin JB, Doyle LW (2001) Statistics for clinicians: 4: basic concepts of statistical reasoning: hypothesis tests and the t-test. J Paediatr Child Health 37:72–77

    Article  PubMed  CAS  Google Scholar 

  36. Matthews DE, Farewell VT (2007) Using and understanding medical statistics, 4th edn. Karger, Basel

    Google Scholar 

  37. Perneger TV (1998) What’s wrong with Bonferroni adjustments. Bmj 316:1236–1238

    PubMed  CAS  Google Scholar 

  38. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  39. Worsley KJ, Evans AC, Marrett S et al (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12:900–918

    PubMed  CAS  Google Scholar 

  40. Worsley KJ, Marrett S, Neelin P et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4:58–73

    Article  PubMed  CAS  Google Scholar 

  41. Deneux T, Faugeras O (2006) Using nonlinear models in fMRI data analysis: model selection and activation detection. Neuroimage 32:1669–1689

    Article  PubMed  Google Scholar 

  42. Friston KJ, Mechelli A, Turner R et al (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12:466–477

    Article  PubMed  CAS  Google Scholar 

  43. Friston KJ, Glaser DE, Henson RN et al (2002) Classical and Bayesian inference in neuroimaging: applications. Neuroimage 16:484–512

    Article  PubMed  CAS  Google Scholar 

  44. Friston KJ, Penny W, Phillips C et al (2002) Classical and Bayesian inference in neuroimaging: theory. Neuroimage 16:465–483

    Article  PubMed  CAS  Google Scholar 

  45. Groves AR, Chappell MA, Woolrich MW (2009) Combined spatial and non-spatial prior for inference on MRI time-series. Neuroimage 45:795–809

    Article  PubMed  Google Scholar 

  46. Woolrich MW, Jbabdi S, Patenaude B et al (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186

    Article  PubMed  Google Scholar 

  47. Lukic AS, Wernick MN, Tzikas DG et al (2007) Bayesian kernel methods for analysis of functional neuroimages. IEEE Trans Med Imaging 26:1613–1624

    Article  PubMed  Google Scholar 

  48. Holden M (2008) A review of geometric transformations for nonrigid body registration. IEEE Trans Med Imaging 27:111–128

    Article  PubMed  CAS  Google Scholar 

  49. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1:91–108

    Article  PubMed  CAS  Google Scholar 

  50. Davatzikos C (1996) Spatial normalization of 3D brain images using deformable models. J Comput Assist Tomogr 20:656–665

    Article  PubMed  CAS  Google Scholar 

  51. Thompson P, Toga AW (1996) A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 15:402–417

    Article  PubMed  CAS  Google Scholar 

  52. Sandor S, Leahy R (1997) Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans Med Imaging 16:41–54

    Article  PubMed  CAS  Google Scholar 

  53. Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  PubMed  Google Scholar 

  54. Studholme C, Constable RT, Duncan JS (2000) Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model. IEEE Trans Med Imaging 19:1115–1127

    Article  PubMed  CAS  Google Scholar 

  55. Thevenaz P, Unser M (2000) Optimization of mutual information for multiresolution image registration. IEEE Trans Image Process 9:2083–2099

    Article  PubMed  CAS  Google Scholar 

  56. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to medical cerebral imaging. Thieme Medical Publishers Inc, New York

    Google Scholar 

  57. Mazziotta J, Toga A, Evans A et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322

    Article  PubMed  CAS  Google Scholar 

  58. Good CD, Johnsrude I, Ashburner J et al (2001) Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 14:685–700

    Article  PubMed  CAS  Google Scholar 

  59. Burgund ED, Kang HC, Kelly JE et al (2002) The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage 17:184–200

    Article  PubMed  Google Scholar 

  60. Muzik O, Chugani DC, Juhasz C et al (2000) Statistical parametric mapping: assessment of application in children. Neuroimage 12:538–549

    Article  PubMed  CAS  Google Scholar 

  61. Hoeksma MR, Kenemans JL, Kemner C et al (2005) Variability in spatial normalization of pediatric and adult brain images. Clin Neurophysiol 116:1188–1194

    Article  PubMed  Google Scholar 

  62. Wilke M, Schmithorst VJ, Holland SK (2002) Assessment of spatial normalization of whole-brain magnetic resonance images in children. Hum Brain Mapp 17:48–60

    Article  PubMed  Google Scholar 

  63. Yoon U, Fonov VS, Perusse D et al (2009) The effect of template choice on morphometric analysis of pediatric brain data. Neuroimage 45:769–777

    Article  PubMed  Google Scholar 

  64. Wilke M, Schmithorst VJ, Holland SK (2003) Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magn Reson Med 50:749–757

    Article  PubMed  CAS  Google Scholar 

  65. Wilke M, Holland SK, Altaye M et al (2008) Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage 41:903–913

    Article  PubMed  Google Scholar 

  66. Altaye M, Holland SK, Wilke M et al (2008) Infant brain probability templates for MRI segmentation and normalization. Neuroimage 43:721–730

    Article  PubMed  Google Scholar 

  67. Prastawa M, Gilmore JH, Lin W et al (2005) Automatic segmentation of MR images of the developing newborn brain. Med Image Anal 9:457–466

    Article  PubMed  Google Scholar 

  68. Weisenfeld NI, Mewes AUJ, Warfield SK (2006) Segmentation of newborn brain MRI. Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro 1:776–769

  69. Song Z, Awate SP, Licht DJ et al (2007) Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors. Med Image Comput Comput Assist Interv 10:883–890

    PubMed  Google Scholar 

  70. Kazemi K, Moghaddam HA, Grebe R et al (2007) A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results. Neuroimage 37:463–473

    Article  PubMed  Google Scholar 

  71. Kazemi K, Ghadimi S, Abrishami-Moghaddam H et al (2008) Neonatal probabilistic models for brain, CSF and skull using T1-MRI data: preliminary results. Conf Proc IEEE Eng Med Biol Soc 2008:3892–3895

    PubMed  CAS  Google Scholar 

  72. Mazziotta JC, Toga AW, Evans A et al (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage 2:89–101

    Article  PubMed  CAS  Google Scholar 

  73. Diedrichsen J, Balsters JH, Flavell J et al (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46

    Article  PubMed  Google Scholar 

  74. Shattuck DW, Mirza M, Adisetiyo V et al (2008) Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39:1064–1080

    Article  PubMed  Google Scholar 

  75. Toga AW, Mazziotta JC (1995) Brain mapping: the methods, 2nd edn. Academic, San Diego

    Google Scholar 

  76. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  77. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  PubMed  Google Scholar 

  78. Holmes AP, Blair RC, Watson JD et al (1996) Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab 16:7–22

    Article  PubMed  CAS  Google Scholar 

  79. Friston KJ, Frith CD, Liddle PF et al (1990) The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 10:458–466

    PubMed  CAS  Google Scholar 

  80. O’Shaughnessy ES, Berl MM, Moore EN et al (2008) Pediatric functional magnetic resonance imaging (fMRI): issues and applications. J Child Neurol 23:791–801

    Article  PubMed  Google Scholar 

  81. Kocak M (2009) Advanced imaging in paediatric neuroradiology. Pediatr Radiol 39:S456–S463

    Article  Google Scholar 

  82. Mannerkoski MK, Heiskala HJ, Van Leemput K et al (2009) Subjects with intellectual disability and familial need for full-time special education show regional brain alterations: a voxel-based morphometry study. Pediatr Res 66:306–311

    Article  PubMed  Google Scholar 

  83. de Jonge RC, Swart JF, Koomen I et al (2008) No structural cerebral differences between children with a history of bacterial meningitis and healthy siblings. Acta Paediatr 97:1390–1396

    PubMed  Google Scholar 

  84. Guimaraes CA, Bonilha L, Franzon RC et al (2007) Distribution of regional gray matter abnormalities in a pediatric population with temporal lobe epilepsy and correlation with neuropsychological performance. Epilepsy Behav 11:558–566

    Article  PubMed  Google Scholar 

  85. Carmona S, Bassas N, Rovira M et al (2007) Pediatric OCD structural brain deficits in conflict monitoring circuits: a voxel-based morphometry study. Neurosci Lett 421:218–223

    Article  PubMed  CAS  Google Scholar 

  86. Ment LR, Hirtz D, Huppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055

    Article  PubMed  Google Scholar 

  87. Counsell SJ, Boardman JP (2005) Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging. Semin Fetal Neonatal Med 10:403–410

    PubMed  Google Scholar 

  88. Tzarouchi LC, Astrakas LG, Xydis V et al (2009) Age-related grey matter changes in preterm infants: an MRI study. Neuroimage 47:1148–1153

    Article  PubMed  CAS  Google Scholar 

  89. Pell GS, Briellmann RS, Waites AB et al (2004) Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy. Neuroimage 21:707–713

    Article  PubMed  Google Scholar 

  90. Snook L, Plewes C, Beaulieu C (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage 34:243–252

    Article  PubMed  Google Scholar 

  91. Lee JE, Chung MK, Lazar M et al (2009) A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage 44:870–883

    Article  PubMed  Google Scholar 

  92. Komatsu H, Nagamitsu S, Ozono S et al (2009) Regional cerebral blood flow changes in early-onset anorexia nervosa before and after weight gain. Brain Dev Oct 27 [Epub ahead of print]

  93. Casanova R, Srikanth R, Baer A et al (2007) Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage 34:137–143

    Article  PubMed  Google Scholar 

  94. Chen K, Reiman EM, Huan Z et al (2009) Linking functional and structural brain images with multivariate network analyses: a novel application of the partial least square method. Neuroimage 47:602–610

    Article  PubMed  Google Scholar 

  95. Tzarouchi LC, Astrakas LG, Kontsiotis S et al (2009) Voxel-based morphometry and voxel-based relaxometry in Parkinsonian variant of multiple system atrophy. J Neuroimaging Jan 29 [Epub ahead of print]

  96. Hugenschmidt CE, Peiffer AM, Kraft RA et al (2008) Relating imaging indices of white matter integrity and volume in healthy older adults. Cereb Cortex 18:433–442

    Article  PubMed  Google Scholar 

  97. Bartres-Faz D, Sole-Padulles C, Junque C et al (2009) Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biol Psychol 80:256–259

    Article  PubMed  Google Scholar 

  98. Somorjai RL (2002) Exploratory data analysis in functional neuroimaging. Artif Intell Med 25:1–3

    Article  PubMed  CAS  Google Scholar 

  99. Petersson KM, Nichols TE, Poline JB et al (1999) Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. Philos Trans R Soc Lond B Biol Sci 354:1239–1260

    Article  PubMed  CAS  Google Scholar 

  100. Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45:S163–S172

    Article  PubMed  Google Scholar 

  101. Sommer FT, Wichert A (eds) (2003) Exploratory analysis and data modeling in functional neuroimaging. MIT Press, Cambridge

    Google Scholar 

  102. Ngan SC, Yacoub ES, Auffermann WF et al (2002) Node merging in Kohonen’s self-organizing mapping of fMRI data. Artif Intell Med 25:19–33

    Article  PubMed  Google Scholar 

  103. Ardila A, Bernal B (2007) What can be localized in the brain? Toward a “factor” theory on brain organization of cognition. Int J Neurosci 117:935–969

    Article  PubMed  Google Scholar 

  104. Papadakis NG, Zheng Y, Wilkinson ID (2003) Analysis of diffusion tensor magnetic resonance imaging data using principal component analysis. Phys Med Biol 48:N343–N350

    Article  PubMed  CAS  Google Scholar 

  105. Guo WY, Wu YT, Wu HM et al (2004) Toward normal perfusion after radiosurgery: perfusion MR Imaging with independent component analysis of brain arteriovenous malformations. AJNR 25:1636–1644

    PubMed  Google Scholar 

  106. Bookstein FL (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 14:1454–1462

    Article  PubMed  CAS  Google Scholar 

  107. Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14:1238–1243

    Article  PubMed  CAS  Google Scholar 

  108. Davatzikos C (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 23:17–20

    Article  PubMed  Google Scholar 

  109. Costafreda SG, David AS, Brammer MJ (2009) A parametric approach to voxel-based meta-analysis. Neuroimage 46:115–122

    Article  PubMed  Google Scholar 

  110. Turkeltaub PE, Eden GF, Jones KM et al (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780

    Article  PubMed  Google Scholar 

  111. Laird AR, Eickhoff SB, Kurth F et al (2009) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinformatics 3:23

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loukas G. Astrakas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astrakas, L.G., Argyropoulou, M.I. Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping. Pediatr Radiol 40, 1857–1867 (2010). https://doi.org/10.1007/s00247-010-1677-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1677-8

Keywords

Navigation