Skip to main content
Log in

Diffusion tensor imaging of normal brain development

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) is an MRI technique that can measure the macroscopic structural organization in brain tissues. DTI has been shown to provide information complementary to relaxation-based MRI about the changes in the brain’s microstructure. In the pediatric population, DTI enables quantitative observation of the maturation process of white matter structures. Its ability to delineate various brain structures during developmental stages makes it an effective tool with which to characterize both the normal and abnormal anatomy of the developing brain. This review will highlight the advantages, as well as the common technical pitfalls of pediatric DTI. In addition, image quantification strategies for various DTI-derived parameters and the normal brain developmental changes associated with these parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barkovich AJ, Raybaud C (2012) Pediatric neuroimaging, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. Keene MFL, Hewer EE (1931) Some observations on myelination in the human nervous system. J Anat 6:1–13

    Google Scholar 

  3. van der Knaap MS, Valk J (2005) Magnetic resonance of myelination and myelin disorders, 3rd edn. Springer, Berlin

    Google Scholar 

  4. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford

    Google Scholar 

  5. Ballesteros MC, Hansen PE, Solla K (1993) MR imaging of the developing human brain. Part 2. Postnatal development. Radiographics 13:611–622

    PubMed  CAS  Google Scholar 

  6. Barkovich AJ, Kios BO, Jackson DE Jr et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    PubMed  CAS  Google Scholar 

  7. Konishi Y, Hayakawa K, Kuriyama M et al (1993) Developmental features of the brain in preterm and fullterm infants on MR imaging. Early Hum Dev 34:155–162

    Article  PubMed  CAS  Google Scholar 

  8. van der Knaap MS, Valk J (1990) MR imaging of various stages of normal myelination during the first year of life. Neuroradiology 31:459–470

    Article  PubMed  Google Scholar 

  9. Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. AJNR 21:1099–1109

    PubMed  CAS  Google Scholar 

  10. Brody BA, Kinney HC, Kloman AS et al (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    Article  PubMed  CAS  Google Scholar 

  11. Huppi PS, Warfield S, Kikinis R et al (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235

    Article  PubMed  CAS  Google Scholar 

  12. Inder TE, Warfield SK, Wang H et al (2005) Abnormal cerebral structures is present at term in premature infants. Pediatrics 115:286–294

    Article  PubMed  Google Scholar 

  13. Kinney HC, Brody BA, Kloman AS et al (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234

    Article  PubMed  CAS  Google Scholar 

  14. Mukherjee P, Miller JH, Shimony JS et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358

    Article  PubMed  CAS  Google Scholar 

  15. Mukherjee P, Miller JH, Shimony JS et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR 23:1445–1456

    PubMed  Google Scholar 

  16. Neil JJ, Shiran SI, McKinstry RC et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66

    PubMed  CAS  Google Scholar 

  17. Petanjek Z, Judas M, Kostovic I et al (2008) Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex 18:915–929

    Article  PubMed  Google Scholar 

  18. Alexander AL, Lee JE, Lazar M et al (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329

    Article  PubMed  Google Scholar 

  19. Bartha AI, Yap KR, Miller SP et al (2007) The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy in healthy term neonates. AJNR 28:1015–1021

    Article  PubMed  CAS  Google Scholar 

  20. Cascio CJ, Gerig G, Piven J (2007) Diffusion tensor imaging: application to the study of the developmental brain. J Am Acad Child Adolesc Psychiatry 46:213–223

    Article  PubMed  Google Scholar 

  21. Ding XQ, Sun Y, Braass H et al (2008) Evidence of rapid ongoing brain development beyond 2 years of age detected by fiber tracking. AJNR 29:1261–1265

    Article  PubMed  Google Scholar 

  22. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G et al (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132

    Article  PubMed  CAS  Google Scholar 

  23. Engelbrecht V, Scherer A, Rassek M et al (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418

    Article  PubMed  Google Scholar 

  24. Gilmore JH, Lin W, Corouge I et al (2007) Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. AJNR 28:1789–1795

    Article  PubMed  CAS  Google Scholar 

  25. Hasan KM, Halphen C, Sankar A et al (2007) Diffusion tensor imaging-based tissue segmentation: validation and application to the developing child and adolescent brain. Neuroimage 34:1497–1505

    Article  PubMed  Google Scholar 

  26. Hasan KM, Sankar A, Halphen C et al (2007) Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging. Neuroreport 18:1735–1739

    Article  PubMed  Google Scholar 

  27. Hermoye L, Saint-Martin C, Cosnard G et al (2006) Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29:493–504

    Article  PubMed  Google Scholar 

  28. Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38

    Article  PubMed  Google Scholar 

  29. Huppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11:489–497

    Article  PubMed  Google Scholar 

  30. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480

    Article  PubMed  CAS  Google Scholar 

  31. Moseley M (2002) Diffusion tensor imaging and aging—a review. NMR Biomed 15:553–560

    Article  PubMed  Google Scholar 

  32. Snook L, Paulson LA, Roy D et al (2005) Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage 26:1164–1173

    Article  PubMed  Google Scholar 

  33. Stegemann T, Heimann M, Dusterhus P et al (2006) Diffusion tensor imaging (DTI) and its importance for exploration of normal or pathological brain development. Fortschr Neurol Psychiatr 74:136–148

    Article  PubMed  CAS  Google Scholar 

  34. Miller JH, McKinstry RC, Philip JV et al (2003) Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination. AJR 180:851–859

    PubMed  Google Scholar 

  35. Huppi PS, Inder TE (2001) Magnetic resonance techniques in the evaluation of the perinatal brain: recent advances and future directions. Semin Neonatol 6:195–210

    Article  PubMed  CAS  Google Scholar 

  36. Limperopoulos C (2010) Advanced neuroimaging techniques: their role in the development of future fetal and neonatal neuroprotection. Semin Perinatol 34:93–101

    Article  PubMed  Google Scholar 

  37. Neil JJ, Miller J, Mukherjee P et al (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15:543–552

    Article  PubMed  CAS  Google Scholar 

  38. Lee SK, Kim DI, Kim J et al (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in development CNS abnormalities. RadioGraphics 25:53–65

    Article  PubMed  Google Scholar 

  39. Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556

    Article  PubMed  Google Scholar 

  40. Wedeen VJ, Hagmann P, Tseng WY et al (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    Article  PubMed  Google Scholar 

  41. Frank LR (2002) Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 47:1083–1099

    Article  PubMed  Google Scholar 

  42. Tournier JD, Calamante F, Gadian DG et al (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–1185

    Article  PubMed  Google Scholar 

  43. Tuch DS, Reese TG, Wiegell MR et al (2003) Diffusion MRI of complex neural architecture. Neuron 40:885–895

    Article  PubMed  CAS  Google Scholar 

  44. Mukherjee P, Hess CP, Xu D et al (2008) Development and initial evaluation of 7-T q-ball imaging of the human brain. Magn Reson Imaging 26:171–180

    Article  PubMed  Google Scholar 

  45. Hoon AH Jr, Jr LWT, Melhem ER et al (2002) Diffusion tensor imaging of periventricular leukomalacia shows affected sensory cortex white matter pathways. Neurology 59:752–756

    Article  PubMed  Google Scholar 

  46. Arzoumanian Y, Mirmiran M, Barnes PD et al (2003) Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR 24:1646–1653

    PubMed  CAS  Google Scholar 

  47. Thomas B, Elyssen M, Peeters R et al (2005) Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 128:2562–2577

    Article  PubMed  Google Scholar 

  48. Nagae LM, Hoon AH Jr, Stashinko E et al (2007) Diffusion tensor imaging in children with periventricular leukomalacia: variability of injuries to white matter tracts. AJNR 28:1213–1222

    Article  PubMed  CAS  Google Scholar 

  49. Glenn OA, Ludeman NA, Berman JI et al (2007) Diffusion tensor MR imaging tractography of the pyramidal tracts correlates with clinical motor function in children with congenital hemiparesis. AJNR 28:1796–1802

    Article  PubMed  CAS  Google Scholar 

  50. Murakami A, Morimoto M, Yamada K et al (2008) Fiber-tracking techniques can predict the degree of neurologic impairment for periventricular leukomalacia. Pediatrics 122:500–506

    Article  PubMed  Google Scholar 

  51. Ludeman NA, Berman JI, Wu YW et al (2008) Diffusion tensor imaging of the pyramidal tracts in infants with motor dysfunction. Neurology 71:1676–1682

    Article  PubMed  CAS  Google Scholar 

  52. Hoon AH Jr, Stashinko EE, Nagae LM et al (2009) Sensory and motor deficits in children with cerebral palsy born preterm correlates with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev Med Child Neurol 52:697–704

    Article  Google Scholar 

  53. Yoshida S, Hayakawa K, Yamamoto A et al (2010) Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol 52:935–940

    Article  PubMed  Google Scholar 

  54. Frye RE, Hasan K, Malmberg B et al (2010) Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term. Dev Med Child Neurol 52:760–766

    Article  PubMed  Google Scholar 

  55. Koerte I, Pelavin P, Kirmess B et al (2010) Anisotropy of transcallosal motor fibres indicates functional impairment in children with periventricular leukomalacia. Dev Med Child Neurol 53:179–186

    Article  PubMed  Google Scholar 

  56. Yoshida S, Hayakawa K, Oishi K et al (2011) Athetotic and spastic cerebral palsy: anatomic characterization in diffusion tensor imaging. Radiology 260:511–520

    Article  PubMed  Google Scholar 

  57. Holmstrom L, Lennartsson F, Eliasson AC et al (2011) Diffusion MRI in corticofugal fibers correlates with hand function in unilateral cerebral palsy. Neurology 77:775–783

    Article  PubMed  Google Scholar 

  58. Hulshoff Pol HE, Schnack HG, Mandl RCW et al (2001) Focal gray matter density changes in schizophrenia. Arch Gen Psychiatry 58:1118–1125

    Article  PubMed  CAS  Google Scholar 

  59. Good CD, Scahill RL, Fox NC et al (2002) Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. Neuroimage 17:29–46

    Article  PubMed  Google Scholar 

  60. Job DE, Whalley HC, McConnell S et al (2002) Structural gray matter differences between first-episode schizophrenics and normal controls using voxel-based morphometry. Neuroimage 17:880–889

    Article  PubMed  Google Scholar 

  61. Kubicki M, Shenton ME, Salisbury DF et al (2001) Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage 17:1711–1719

    Article  Google Scholar 

  62. Counsell SJ, Edward AD, Chew AT et al (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131:3201–3208

    Article  PubMed  Google Scholar 

  63. Gimenez M, Miranda MJ, Born AP et al (2008) Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging. Neuroimage 41:728–734

    Article  PubMed  Google Scholar 

  64. Tzarouchi LC, Astrakas LG, Xydis V et al (2009) Age-related gray matter changes in preterm infants: an MRI study. Neuroimage 47:1148–1153

    Article  PubMed  CAS  Google Scholar 

  65. Sonia-Pastor S, Padilla N, Zubiaurre-Elorza L et al (2009) Decreased regional brain volume and cognitive impairment in preterm children at low risk. Pediatrics 124:1161–1170

    Article  Google Scholar 

  66. Lee JD, Park H, Park ES et al (2011) Motor pathway injury in patients with periventricular leucomalacia and spastic diplegia. Brain 134:1199–1210

    Article  PubMed  Google Scholar 

  67. Davatzikos C (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neuroimage 23:17–20

    Article  PubMed  Google Scholar 

  68. Ball G, Counsell SJ, Anjari M et al (2010) An optimized tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease. Neuroimage 53:94–102

    Article  PubMed  Google Scholar 

  69. van Kooij BJM, de Vries LS, Ball G et al (2012) Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR 33:188–194

    Article  PubMed  Google Scholar 

  70. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  71. Oishi K, Mori S, Donohue PK et al (2011) Multi-contrast human neonatal brain atlas: application to normal neonate developmental analysis. Neuroimage 56:8–20

    Article  PubMed  Google Scholar 

  72. Faria AV, Zhang J, Oishi K et al (2010) Atlas-based analysis of neurodevelopment from infancy to adult hood using diffusion tensor imaging and applications for automated abnormality detection. Neuroimage 52:415–428

    Article  PubMed  Google Scholar 

  73. Faria AV, Hoon AH Jr, Stashinko EE et al (2011) Quantitative analysis of brain pathology based on MRI and brain atlases-applications for cerebral palsy. Neuroimage 54:1854–1861

    Article  PubMed  Google Scholar 

  74. Schneider JF, Il’yasow KA, Hennig J et al (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46:258–266

    Article  PubMed  CAS  Google Scholar 

  75. Berman JI, Mukherjee P, Partridge SC et al (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27:862–871

    Article  PubMed  Google Scholar 

  76. Dubois J, Dehaene-Lambertz G, Perrin M et al (2008) Asynchrony of the early maturation of white matter bundles in healthy infants: quantitative landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp 29:14–27

    Article  PubMed  Google Scholar 

  77. Gao W, Lin W, Chen Y et al (2009) Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. AJNR 30:290–296

    Article  PubMed  CAS  Google Scholar 

  78. Huppi PS, Maier SE, Peled S et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590

    Article  PubMed  CAS  Google Scholar 

  79. Lobel U, Sedlacik J, Gullmar D et al (2009) Diffusion tensor imaging: the normal evolution of ADC, RA, FA and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 51:253–263

    Article  PubMed  Google Scholar 

  80. Partridge SC, Mukherjee P, Berman JI et al (2005) Tractography-based quantitation of diffusion tensor imaging parameters in white matter tracts of preterm newborns. J Magn Reson Imaging 22:467–474

    Article  PubMed  Google Scholar 

  81. Paus T, Collins DL, Evans AC et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266

    Article  PubMed  CAS  Google Scholar 

  82. Provenzale JM, Liang L, DeLong D et al (2007) Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR 189:476–486

    Article  PubMed  Google Scholar 

  83. Maas LC, Mukherjee P, Carballido-Gamio J et al (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22:1134–1140

    Article  PubMed  Google Scholar 

  84. Beauchamp N Jr, Bryan RN, van Zijl PC (1997) Absolute quantitation of diffusion constants in human stroke. Stroke 28:483–490

    Article  PubMed  Google Scholar 

  85. McGraw P, Liang L, Provenzale JM (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR 179:1515–1522

    PubMed  Google Scholar 

  86. Suzuki Y, Matsukawa H, Kwee IL et al (2003) Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR Biomed 16:257–260

    Article  PubMed  Google Scholar 

  87. Partridge SC, Mukherjee P, Henry RG et al (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22:1302–1314

    Article  PubMed  Google Scholar 

  88. Yoo SS, Park HJ, Soul JS et al (2005) In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging. Invest Radiol 40:110–115

    Article  PubMed  Google Scholar 

  89. Mukherjee P, McKinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 16:19–43, vii

    Article  PubMed  Google Scholar 

  90. Provenzale JM, Isaacson J, Chen S et al (2010) Correlation of apparent diffusion coefficient and fractional anisotropy values in the developing infant brain. AJR 195:456–462

    Article  Google Scholar 

  91. Schmithorst VJ, Wike M, Dardzinski BJ et al (2002) Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study. Radiology 222:212–218

    Article  PubMed  Google Scholar 

  92. Kostovic I, Jovanov-Milosevic N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med 11:415–422

    Article  PubMed  Google Scholar 

  93. Drobysehvsky A, Song SK, Gamkrelidze G et al (2005) Developmental changes in diffusion anisotropy coincide with immature oligodendtocyte progression and maturation of compound action potential. J Neurosci 25:5988–5997

    Article  CAS  Google Scholar 

  94. Zhai G, Lin W, Wilber KP et al (2003) Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229:673–681

    Article  PubMed  Google Scholar 

  95. Bayer SA, Altman J (2004) The human brain during the third trimester. CRC Press, Boca Raton, pp 1–392

    Google Scholar 

  96. Baratti C, Barnett A, Pierpaoli C (1999) Comparative MR imaging study of brain maturation in kittens with T1, T2, and the trace of the diffusion tensor. Radiology 210:133–142

    PubMed  CAS  Google Scholar 

  97. McKinstry RC, Mathur A, Miller JH et al (2002) Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12:1237–1243

    Article  PubMed  Google Scholar 

  98. Thornton JS, Ordidge RJ, Penrice J et al (1997) Anisotropic water diffusion in white and gray matter of the neonatal piglet brain before and after transient hypoxia-ischaemia. Magn Reson Imaging 15:433–440

    Article  PubMed  CAS  Google Scholar 

  99. Mori S, Itoh R, Zhang J et al (2001) Diffusion tensor imaging of the developing mouse brain. Magn Reson Med 46:18–23

    Article  PubMed  CAS  Google Scholar 

  100. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539

    Article  PubMed  CAS  Google Scholar 

  101. Zhang J, Richards LJ, Yarowsky P et al (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 20:1639–1648

    Article  PubMed  Google Scholar 

  102. Kroenke CD, Bretthorst GL, Inder TE et al (2005) Diffusion MR imaging characteristics of the developing primate brain. Neuroimage 25:1205–1213

    Article  PubMed  Google Scholar 

  103. Gupta RK, Hasan KM, Trivedi R et al (2005) Diffusion tensor imaging of the developing human cerebrum. J Neurosci Res 81:172–178

    Article  PubMed  CAS  Google Scholar 

  104. Marin-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J Comp Neurol 321:223–240

    Article  PubMed  CAS  Google Scholar 

  105. Deipolyi AR, Mukherjee P, Gill K et al (2005) Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. Neuroimage 27:579–586

    Article  PubMed  Google Scholar 

  106. Takahashi E, Folkerth RD, Galaburda AM et al (2012) Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex 22:455–464

    Article  PubMed  Google Scholar 

  107. Dubois J, Benders M, Lazeyras F et al (2010) Structural asymmetries of perisylvian regions in the preterm newborn. Neuroimage 52:32–42

    Article  PubMed  CAS  Google Scholar 

  108. Dekaban AS (1978) Changes in brain weight during the in brain weight during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4:345–356

    Article  PubMed  CAS  Google Scholar 

  109. Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729

    Article  PubMed  Google Scholar 

  110. Paus T, Zijdenbos A, Worsley K et al (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911

    Article  PubMed  CAS  Google Scholar 

  111. Thompson PM, Giedd JN, Woods RP et al (2000) Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 404:190–193

    Article  PubMed  CAS  Google Scholar 

  112. Hasan KM, Kamali A, Kramer LA et al (2008) Diffusion tensor quantification of the human midsagittal corpus callosum subdivisions across the lifespan. Brain Res 1227:52–67

    Article  PubMed  CAS  Google Scholar 

  113. Klingberg T, Vaidya CJ, Gabrieli JD et al (1999) Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10:2817–2821

    Article  PubMed  CAS  Google Scholar 

  114. Lebel C, Walker L, Leemans A et al (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055

    Article  PubMed  CAS  Google Scholar 

  115. Qiu D, Tan LH, Zhou K et al (2008) Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. Neuroimage 41:223–232

    Article  PubMed  Google Scholar 

  116. Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36

    Article  PubMed  CAS  Google Scholar 

  117. Sowell ER, Thompson PM, Tessner KD et al (2001) Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci 21:8819–8829

    PubMed  CAS  Google Scholar 

  118. Giedd JN, Blumenthal J, Jeffries NO et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  PubMed  CAS  Google Scholar 

  119. Reiss AL, Abrams MT, Singer HS et al (1996) Brain development, gender and IQ in children. A volumetric imaging study. Brain 119:1763–1774

    Article  PubMed  Google Scholar 

  120. Benedict RH, Bobholz JH (2007) Multiple sclerosis. Semin Neurol 27:78–85

    Article  PubMed  Google Scholar 

  121. Bigler ED, Kerr B, Victoroff J et al (2002) White matter lesions, quantitative magnetic resonance imaging, and dementia. Alzheimer Dis Assoc Disord 16:161–170

    Article  PubMed  Google Scholar 

  122. Bigler ED, Neeley ES, Miller MJ et al (2004) Cerebral volume loss, cognitive deficit and neuropsychological performance: comparative measures of brain atrophy: I. Dementia. J Int Neuropsychol Soc 10:442–452

    PubMed  Google Scholar 

  123. Shaw P, Kabani NJ, Lerch JP et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594

    Article  PubMed  CAS  Google Scholar 

  124. Eyre JA, Miller S, Ramesh V (1991) Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J Physiol 434:441–452

    PubMed  CAS  Google Scholar 

  125. Kandel ER, Schwarz JH, Jessel TM (2000) Principles of neural science, 4th edn. McGraw-Hill Medical, New York

    Google Scholar 

  126. Armand J, Olivier E, Edgley SA et al (1997) Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey. J Neurosci 17:251–266

    PubMed  CAS  Google Scholar 

  127. Muller K, Homberg V, Lenard HG (1991) Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 81:63–70

    Article  PubMed  CAS  Google Scholar 

  128. Nezu A, Kimura S, Uehara S et al (1997) Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev 19:176–180

    Article  PubMed  CAS  Google Scholar 

  129. Pierpaoli C, Barnett A, Pajevic S et al (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185

    Article  PubMed  CAS  Google Scholar 

  130. Gogtay N, Giedd JN, Lusk L et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179

    Article  PubMed  CAS  Google Scholar 

  131. Salat DH, Tuch DS, Hevelone ND et al (2005) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann NY Acad Sci 1064:37–49

    Article  PubMed  CAS  Google Scholar 

  132. Barres BA, Barde Y (2000) Neuronal and glial cell biology. Curr Opin Neurobiol 10:642–648

    Article  PubMed  CAS  Google Scholar 

  133. Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68:647–654

    Article  PubMed  CAS  Google Scholar 

  134. Fields RD, Stevens-Graham B (2002) New insights into neuron–glia communication. Science 298:556–562

    Article  PubMed  CAS  Google Scholar 

  135. Barnea-Goraly N, Menon V, Eckert M et al (2005) White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex 15:1848–1854

    Article  PubMed  Google Scholar 

  136. Ben Bashat D, Ben Sira L, Graif M et al (2005) Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images. J Magn Reson Imaging 21:503–511

    Article  PubMed  Google Scholar 

  137. Peters BD, Szeszko PR, Radua J et al (2012) White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophrenia Bull. May 2 [Epub ahead on print]

Download references

Acknowledgments

The authors thank Ms. Mary McAllister for help with manuscript editing. This publication was made possible by NIH grants RO1AG20012, and P41EB015909 from NCRR/NIBIB (SM), R01HD065955 from NICHD (KO) and R03EB014357 from NIBIB/NIH (AF). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of any of these institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Mori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, S., Oishi, K., Faria, A.V. et al. Diffusion tensor imaging of normal brain development. Pediatr Radiol 43, 15–27 (2013). https://doi.org/10.1007/s00247-012-2496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2496-x

Keywords

Navigation