Skip to main content
Log in

Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Diffusion-weighted imaging (DWI) of the brain represents a new imaging technique that extends imaging from depiction of neuroanatomy to the level of function and physiology. DWI measures a fundamentally different physiological parameter compared with conventional MRI. Image contrast is related to differences in the diffusion rate of water molecules rather than to changes in total tissue water. DWI can reveal pathology in cases where conventional MRI remains unremarkable. DWI has proven to be highly sensitive in the early detection of acute cerebral ischemia and seems promising in the evaluation of traumatic brain injury. DWI can differentiate between lesions with decreased and increased diffusion. In addition, full-tensor DWI can evaluate the microscopic architecture of the brain, in particular white matter tracts, by measuring the degree and spatial distribution of anisotropic diffusion within the brain. This article reviews the basic concepts of DWI and its application in cerebral ischemia and traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2A–C.
Fig. 3.
Fig. 4.
Fig. 5a, b.
Fig. 6A–D.
Fig. 7.
Fig. 8A–D.
Fig. 9A–H.
Fig. 10A–E.
Fig. 11A–D.
Fig. 12A–D.
Fig. 13A–D.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

References

  1. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin-echo in the presence of a time dependent field gradient. J Chem Phys 42:288–229

    CAS  Google Scholar 

  2. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval–Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  3. Provenzale JM. Sorensen AG (1999) Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. Am J Roentgenol 173:1459–1467

    CAS  Google Scholar 

  4. Gonzalez RG, Schaefer PW, Buonanno FS, Schwamm LH, Budzik RF, Rordorf G, Wang B, Sorensen AG, Koroshetz WJ (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210:155–162

    PubMed  Google Scholar 

  5. Lövblad KO, Laubach HJ, Baird AE, Curtin F, Schlaug G, Edelman RR, Warach S (1998) Clinical experience with diffusion-weighted MR in patients with acute stroke. Am J Neuroradiol 19:1061–1066

    CAS  PubMed  Google Scholar 

  6. Sorensen AG, Buonnano FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, Reese TG, Weiskoff RM, Davis TL, Suwanwela N, Can U, Moreira JA, Copen WA, Look RB, Finklestein SP, Rosen BR, Koroshetz WJ (1996) Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199:391–401

    CAS  PubMed  Google Scholar 

  7. Sorensen AG, Rosen BR (1996) Functional MRI of the brain. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine. Lippincott–Raven, Philadelphia, pp 1501–1543

  8. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Chiro G di (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    CAS  PubMed  Google Scholar 

  9. Nomura Y, Sakuma H, Takeda K, Tagami T, Okuda Y, Nakagawa T (1994) Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. Am J Neuroradiol 15:231–238

    CAS  PubMed  Google Scholar 

  10. Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J (1995) Identification of "premyelination" by diffusion-weighted MRI. J Comput Assist Tomogr 19:28–33

    CAS  PubMed  Google Scholar 

  11. Sorensen AG, Wu O, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ, Reese TG, Rosen BR, Wedeen VJ, Weisskoff RM (1999) Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 212:785–792

    CAS  PubMed  Google Scholar 

  12. Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG, Wedeen VJ, Davis TJ, Stakes JW, Caviness VS, Kaplan E, Rosen BR, Pandya DN, Kennedz DN (1997) Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol 42:951–962

    CAS  PubMed  Google Scholar 

  13. Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525

    Article  CAS  PubMed  Google Scholar 

  14. Wu O, Grant PE, Koroshetz WJ, Gonzalez RG, Rosen BR, Synnott JP, Sorensen AG (2000) Reversal of DWI lesions may be associated with increases in anisotropy (abstr). In: Proc 8th Scientific Meeting of the International Society for Magnetic Resonance in Medicine. Denver, Colorado, p 778

  15. Wedeen VJ, Reese TG, Tuch DS, Wiegel MR, Dou JG, Weisskoff RM, Chessler D (2000) Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI (abstr). In: Proc 8th Scientific Meeting of the International Society for Magnetic Resonance in Medicine. Denver, Colorado, p 82

  16. Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW (2001) Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci USA 98:11697–11701

    Article  CAS  PubMed  Google Scholar 

  17. Yoshiura T, Wu O, Zaheer A, Reese TG, Sorensen AG (2001) Highly diffusion-sensitized MRI of brain: dissociation of gray and white matter. Magn Reson Med 45:734–740

    Article  CAS  PubMed  Google Scholar 

  18. Meyer JR, Gutierrez A, Mock B, Hebron D, Prager JM, Gorey MT, Homer D (2000) High-b-value diffusion-weighted MR imaging of suspected brain infarction. Am J Neuroradiol 21:1821–1829

    CAS  PubMed  Google Scholar 

  19. Reese TG, Heid O, Weiskoff RM, Wedeen VJ (1998) Reduction of eddy-current-induced distortion in diffusion MRI using a twice refocused spin echo. Magn Reson Med 49:177–182

    Article  Google Scholar 

  20. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    CAS  PubMed  Google Scholar 

  21. Melhem ER, Itoh R, Jones L, Barker PB (2000) Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. Am J Neuroradiol 21:1813–1820

    CAS  PubMed  Google Scholar 

  22. Chien D, Kwong KK, Gress DR, Buonanno FS, Buxton RB, Rosen BR (1992) MR diffusion imaging of cerebral infarction in humans. Am J Neuroradiol 13:1097–1102

    CAS  PubMed  Google Scholar 

  23. Warach S, Chien D, Li W, Ronthal M, Edelman RR (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42:1717–1723

    CAS  PubMed  Google Scholar 

  24. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR (1995) Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 37:231–241

    PubMed  Google Scholar 

  25. Mohr JP, Biller J, Hilal SK, Yuh WT, Tatemichi TK, Hedges S, Tali E, Nguyen H, Mun I, Adams HP Jr, Grimsman K, Marler JR (1995) Magnetic resonance versus computed tompographic imaging in acute stroke. Stroke 26:807–812

    CAS  PubMed  Google Scholar 

  26. Marks MP, de Crespigny A, Lentz D, Enzmann DR, Albers GW, Moseley ME (1996) Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imaging. Radiology 199:403–408

    CAS  PubMed  Google Scholar 

  27. Lovblad KO, Basetti C, Schneider J, Guzman R, El-Koussy M, Remonda L, Schroth G (2001) Diffusion-weighted MR in cerebral venous thrombosis. Cerebrovasc Dis 11:169–176

    Article  CAS  PubMed  Google Scholar 

  28. Chu K, Kang DW, Yoon BW, Roh JK (2001) Diffusion-weighted magnetic resonance in cerebral venous thrombosis. Arch Neurol 58:1569–1576

    CAS  PubMed  Google Scholar 

  29. Keller E, Flacke S, Urbach H, Schild HH (1999) Diffusion- and perfusion-weighted magnetic resonance imaging in deep cerebral venous thrombosis. Stroke 30:1144–1146

    CAS  PubMed  Google Scholar 

  30. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    CAS  PubMed  Google Scholar 

  31. Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49:113–119

    CAS  PubMed  Google Scholar 

  32. Matsumoto K, Lo EH, Pierce AR, Wei H, Garrido L, Kowall NW (1995) Role of vasogenic edema and tissue cavitation in ischemic evolution on diffusion-weighted imaging: comparison with multiparameter MR and immunohistochemistry. Am J Neuroradiol 16:1107–1115

    CAS  PubMed  Google Scholar 

  33. Copen WA, Schwamm LH, Gonzalez RG, Wu O, Harmath CB, Schaefer PW, Koroshetz WJ, Sorensen AG (2001) Ischemic stroke: effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology 221:27–34

    CAS  PubMed  Google Scholar 

  34. Rordoff G, Koroshetz WJ, Copen WA, Cramer SC, Schaefer PW, Budzik RF Jr, Schwamm LH, Buonanno F, Sorensen AG, Gonzalez G (1998) Regional ischemia and ischemic injury in patients with acute middle cerebral artery stroke as defined by early diffusion-weighted and perfusion-weighted MRI. Stroke 29:939–943

    CAS  PubMed  Google Scholar 

  35. Schwamm LH, Koroshetz WJ, Sorensen AG, Wang B, Copen WA, Budzik R, Rordorf G, Buonanno FS, Schaefer PW, Gonzalez RG (1998) Time course of lesion development in patients with acute stroke: serial diffusion- and hemodynamic-weighted magnetic resonance imaging. Stroke 29:2268–2276

    CAS  PubMed  Google Scholar 

  36. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia: the ischemic penumbra. Stroke 12:723–725

    CAS  PubMed  Google Scholar 

  37. Symon L (1980) The relationship between CBF, evoked potentials and the clinical features in cerebral ischaemia. Acta Neurol Scand 78 (Suppl):175–190

    CAS  Google Scholar 

  38. Marchal G, Beaudouin V, Rioux P, Sayette V de la, Le Doze F, Viader F, Derlon JM, Baron JC (1996) Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET–CT study with voxel-based data analysis. Stroke 27:599–606

    Google Scholar 

  39. Furlan M, Marchal G, Viader F, Derlon JM, Baron JC (1996) Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 40:216–226

    CAS  PubMed  Google Scholar 

  40. Heiss WD, Graf R, Wienhard K, Lottgen J, Saito R, Fujita T, Rosner G, Wagner R (1994) Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 14:892–902

    Google Scholar 

  41. Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R, Wienhard K (1992) Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 12:193–203

    CAS  PubMed  Google Scholar 

  42. Memezawa H, Smith ML, Siesjo BK (1992) Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559

    CAS  PubMed  Google Scholar 

  43. Hossmann KA (1995) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Google Scholar 

  44. Quast MJ, Huang NC, Hillman GR, Kent TA (1993) The evolution of acute stroke recorded by multimodal magnetic resonance imaging. Magn Reson Imaging 11:465–471

    CAS  PubMed  Google Scholar 

  45. Schlaug G, Benfield A, Baird AE, Siewert B, Lovblad KO, Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537

    CAS  PubMed  Google Scholar 

  46. Wu O, Koroshetz WJ, Ostergaard L, Buonanno FS, Copen WA, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Sorensen AG (2001) Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 32:933–942

    CAS  PubMed  Google Scholar 

  47. Hergan K, Schaefer PW, Sorensen AG, Gonzalez RG, Huisman TAGM (2002) Diffusion-weighted MRI in diffuse axonal injury of the brain. Eur Radiol 12:2536–2541

    CAS  PubMed  Google Scholar 

  48. Liu AY, Maldjian JA, Bagley LJ, Sinson GP, Grossman RI (1999) Traumatic brain imaging: diffusion-weighted MR imaging findings. Am J Neuroradiol 20:1636–1641

    CAS  PubMed  Google Scholar 

  49. Smith DH, Meaney DF, Lenkinski RE, Alsop DC, Grossman R, Kimura H, McIntosh TK, Gennarelli TA (1995) New magnetic resonance imaging techniques for the evaluation of traumatic brain injury. J Neurotrauma 12:573–577

    CAS  PubMed  Google Scholar 

  50. Hanstock CC, Faden AI, Bendall RM, Vink R (1994) Diffusion-weighted imaging differentiates ischemic tissue from traumatized tissue. Stroke 25:843–848

    CAS  PubMed  Google Scholar 

  51. Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87:900–907

    CAS  PubMed  Google Scholar 

  52. Ito J, Marmarou A, Barzo P, Fatouros P, Corwin F (1996) Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J Neurosurg 84:97–103

    CAS  PubMed  Google Scholar 

  53. Huisman TAGM, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW (2003) Diffusion weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 27:5–11

    Article  PubMed  Google Scholar 

  54. Schaefer PW,·Huisman T,·Schwamm LH,·Sorensen AG,·Halpern EF,·Gonzalez RG (2002) Magnetic resonance imaging in diffuse axonal injury: correlation with early Glasgow Coma Scale and Rankin Scale on Discharge (abstr). The 40th Annual Meeting and Symposium of the American Society of Neuroradiology, Vancouver, p 287

    Google Scholar 

  55. Huisman TAG, Schaefer PW, Schwamm LH, Ozsunar Y, Hergan K, Wu O, Sorensen AG (2002) Diffusion tensor imaging as biomarker for severity of head trauma (abstr). The 40th Annual Meeting and Symposium of the American Society of Neuroradiology, Vancouver, p 57

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry A. G. M. Huisman.

Appendix

Appendix

In all presented images (with exception of Fig. 1) full-tensor DWI was performed averaged over three data sets for a total acquisition time of 126 s. The entire diffusion tensor was sampled using a spin-echo single-shot echo-planar sequence repeated in six colinear directions. Imaging parameters were TR=6000 ms, TE=118 ms, slice thickness 6 mm, interslice gap 1 mm, field of view 40×20 cm, and acquisition matrix 256×128 pixels. Diffusion gradients were applied at a finite low b value (3 s/mm2) and a high b value (1221 s/mm2). The sequence has been previously described in detail [10]. In Fig. 1, images were averaged over eight data sets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huisman, T.A.G.M. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 13, 2283–2297 (2003). https://doi.org/10.1007/s00330-003-1843-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-1843-6

Keywords

Navigation