Skip to main content
Log in

Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children

  • Pediatric
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Perfusion-weighted magnetic resonance imaging (PWI) has been proposed as an attractive non-invasive tool for evaluating cerebral haemodynamics. Quantitative maps of cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP) and various other haemodynamic parameters can be obtained. Recent advances in hard- and software made PWI available for clinical routine. Although PWI became common in adult neuroradiology, it remains challenging in pediatric neuroradiology. In this article, the different PWI techniques that render haemodynamic maps of the brain are presented and discussed. The normal developmental changes of the cerebral haemodynamics in children as measured by PWI are presented as well as the application of PWI in cerebral ischaemia, primary and secondary cerebral vasculopathies and in cerebral tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4a, b.
Fig. 5a, b.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9a–c.
Fig. 10a–c.
Fig. 11a–d.
Fig. 12a, b.
Fig. 13a–c.

Similar content being viewed by others

References

  1. Roy CS, Sherrington CS (1890) J Physiol (Lond) 11:85–108

    Google Scholar 

  2. Grubb RL Jr, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5:630–639

    PubMed  Google Scholar 

  3. Powers WJ (1991) Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 29:231–240

    CAS  PubMed  Google Scholar 

  4. Powers WJ, Grubb RL, Raichle ME (1984) Physiological responses to focal cerebral ischemia in humans. Ann Neurol 16:546–552

    CAS  PubMed  Google Scholar 

  5. Zaharchuk G, Mandeville JB, Bogdonov AA Jr, Weissleder R, Rosen BR, Marota JJ (1999) Cerebrovascular dynamics of autoregulation and hypoperfusion: an MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke 30:2197–2203

    CAS  PubMed  Google Scholar 

  6. Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weiskoff RM, Koroshetz WJ (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210:519–527

    PubMed  Google Scholar 

  7. Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14:538–546

    CAS  PubMed  Google Scholar 

  8. Rosen BR, Belliveau JW, Buchbinder BR, McKinstry RC, Porkka LM, Kennedy DN, Neuder MS, Fisel CR, Aronen HJ, Kwong KK, Brady TJ (1991) Contrast agents and cerebral hemodynamics. Magn Reson Med 19:285–292

    CAS  PubMed  Google Scholar 

  9. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    CAS  PubMed  Google Scholar 

  10. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  11. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566

    CAS  PubMed  Google Scholar 

  12. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    CAS  PubMed  Google Scholar 

  13. Stewart GN (1893) Research on the circulation time in organs and on the influences which affect it. J Physiol 15:1–89

    Google Scholar 

  14. Meier P, Zierler KL (1954) On theory of indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    Google Scholar 

  15. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610

    CAS  PubMed  Google Scholar 

  16. Boxerman JL, Rosen BR, Weisskoff RM (1997) Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 7:528–537

    CAS  PubMed  Google Scholar 

  17. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    PubMed  Google Scholar 

  18. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    PubMed  Google Scholar 

  19. Lev MH, Kulke SF, Sorensen AG, Boxerman JL, Brady TJ, Rosen BR, Buchbinder BR, Weisskoff RM (1997) Contrast-to-noise ratio in functional MRI of relative cerebral blood volume with sprodiamide injection. J Magn Reson Imaging 7:523–527

    CAS  PubMed  Google Scholar 

  20. Perthen JE, Calamante F, Gadian DG, Connelly A (2002) Is quantification of bolus tracking MRI reliable without deconvolution? Magn Reson Med 47:61–67

    Google Scholar 

  21. Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, imitations, and potential implications for clinical use. Stroke 33:1146–1151

    Article  CAS  PubMed  Google Scholar 

  22. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion Imaging. Magn Reson Med 23:37–45

    CAS  PubMed  Google Scholar 

  23. Detre JA, Alsop DC, Vives LR, Maccotta L, Teener JW, Raps EC (1998) Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 50:633–641

    CAS  PubMed  Google Scholar 

  24. Born AP, Rostrup E, Miranda MJ, Larsson HBW, Lou HC (2002) Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR). Magn Reson Imaging 20:199–205

    Article  CAS  PubMed  Google Scholar 

  25. Ball WS Jr, Holland SK (2001) Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 9:207–230

    PubMed  Google Scholar 

  26. Tokumaru AM, Barkovich AJ, O'uchi T, Matsuo T, Kusano S (1999) The evolution of cerebral blood flow in the developing brain: evaluation with iodine-123 iodoamphetamine SPECT and correlation with MR imaging. Am J Neuroradiol 20:845–852

    CAS  PubMed  Google Scholar 

  27. Takahashi T, Shirane R, Sato S, Yoshimoto T (1999) Developmental changes of cerebral blood flow and oxygen metabolism in children. Am J Neuroradiol 20:917–922

    CAS  PubMed  Google Scholar 

  28. Monakow C von (1900) Uber die projektions und die assoziationszentren im grosshirn. Monatsschr Psychiatrie 8:405–420

    Google Scholar 

  29. Craigie EH (1924) Changes in the vascularity in the brain stem and cerebellum of the albino rat between birth and maturity. J Comp Neurol 38:27–48

    Google Scholar 

  30. Kennedy C, Grave GD, Jehle JW, Sokoloff L (1970) Blood flow to white matter during maturation of the brain. Neurology 20:613–618

    CAS  PubMed  Google Scholar 

  31. Kennedy C, Grave GD, Jehle JW, Sokoloff L (1972) Changes in blood flow in the component structures of the dog brain during postnatal maturation. J Neurochem 19:2423–2433

    CAS  PubMed  Google Scholar 

  32. Gonzalez RG, Schaefer PW, Buonanno FS, Shwamm LH, Budzik RF, Rordorf G, Wang B, Sorensen AG, Koroshetz WJ (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210:155–162

    PubMed  Google Scholar 

  33. Kaufmann AM, Firlik AD, Fukui MB, Wechsler LR, Jungries CA, Yonas H (1999) Ischemic core and penumbra in human stroke. Stroke 30:93–99

    CAS  PubMed  Google Scholar 

  34. Schlaug G, Benfield A, Baird AE, Siewert B, Lovblad KO, Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537

    CAS  PubMed  Google Scholar 

  35. Davis R, Bulkley G, Traystman R (1988) Role of oxygen free radicals in focal brain ischemia. In: Tomita M, Sawada T, Naritomi H, Weiss W-D (eds) Cerebral hyperemia and ischemia: from the standpoint of cerebral blood volume. Excerpta Medica, Amsterdam, pp 151–156

  36. Keller E, Flacke S, Urbach H, Schild HH (1999) Diffusion- and perfusion-weighted magnetic resonance imaging in deep cerebral venous thrombosis. Stroke 30:1144–1146

    CAS  PubMed  Google Scholar 

  37. Tzika AA, Robertson RL, Barnes PD, Vajapeyam S, Burrows PE, Treves ST, Scott RM (1997) Childhood Moyamoya disease: hemodynamic MRI. Pediatr Radiol 27:727–735

    Article  CAS  PubMed  Google Scholar 

  38. Tsuchiya K, Inaoka S, Mitzutani Y, Hachiya J (1998) Echo-planar perfusion MR of Moyamoya disease. Am J Neuroradiol 19:211–216

    CAS  PubMed  Google Scholar 

  39. Calamante F, Ganesan V, Kirkham FJ, Jan W, Chong WK, Gadian DG, Connelly A (2001) MR perfusion imaging in Moyamoya syndrome: potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke 32:2810–2816

    CAS  PubMed  Google Scholar 

  40. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, Cosgrove GR, Halpern EF, Hochberg FH, Rosen BR (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    CAS  PubMed  Google Scholar 

  41. Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly PJ, Kricheff II (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    CAS  PubMed  Google Scholar 

  42. Taylor JS, Tofts PS, Port R, Evelhoch JL, Knopp M, Reddick WE, Runge VM, Mayr N (1999) MR imaging of tumor microcirculation: promise for the new millenium. J Magn Reson Imaging 10:903–907

    Article  CAS  PubMed  Google Scholar 

  43. Aronen HJ, Glass J, Pardo FS, Belliveau JW, Gruber ML, Buchbinder BR, Gazit IE, Linggood RM, Fischman AJ, Rosen BR (1995) Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility. Acta Radiol 36:520–528

    CAS  PubMed  Google Scholar 

  44. Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641

    CAS  PubMed  Google Scholar 

  45. Sorensen AG, Rosen BR (1996) Functional MRI of the brain. In: Atlas-Scott W (ed) Magnetic resonance imaging of the brain and spine. Lippincott-Raven, Philadelphia, pp 1501–1545

  46. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  47. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    CAS  PubMed  Google Scholar 

  48. Wesseling P, van der Laak JA, Link M, Teepen HL, Ruiter DJ (1998) Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Human Pathol 29:352–358

    CAS  Google Scholar 

  49. Zama A, Tamura M, Inoue HK (1991) Three-dimensional observations on microvascular growth in rat glioma using a vascular casting method. J Cancer Res Clin Oncol 117:396–402

    CAS  PubMed  Google Scholar 

  50. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610

    CAS  PubMed  Google Scholar 

  51. Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry A. G. M. Huisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huisman, T.A.G.M., Sorensen, A.G. Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children. Eur Radiol 14, 59–72 (2004). https://doi.org/10.1007/s00330-003-1972-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-1972-y

Keywords

Navigation