Skip to main content
Log in

Evaluation of various image reconstruction parameters in lower extremity stents using multidetector-row CT angiography: initial findings

  • Computer Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Image quality, visible lumen and patency of lower limb stents was assessed by multidetector-row computed tomography (MDCT) angiography using various reconstruction parameters and the results compared with conventional angiography. Fourteen patients (25 stents) were evaluated. From MDCT datasets, axial and coronal oblique reformations were reconstructed using differing reconstruction parameters (slice thickness, kernel, views). Artifacts and image quality were assessed using a five-degree scale (1=excellent, 5=poor). Visible stent diameter was measured. Stenosis severity was compared with calibrated catheter angiography. The image quality of medium and sharp image kernels were good/fair (1.9–2.4), while smooth kernel provided only acceptable/poor image quality (3.9–4.4). Coronal oblique images were rated superior to assess in-stent lumen rather than axial. Using medium and sharp kernels, the visible stent lumen was significantly greater than using smooth kernel (P<0.001). thirteen out of fourteen patients (24/25 stents) were correctly classified as patent. In one patient, in-stent stenosis (≥50%) was falsely diagnosed using CT angiography (CTA) with smooth kernel and was, therefore, rated as false positive. Coronal oblique views, as well as medium and sharp kernels, have shown the best results regarding image quality to assess stent patency in the lower limb. Therefore, MDCT could be a valuable non-invasive modality for stent imaging in the peripheral vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–j
Fig. 2

Similar content being viewed by others

References

  1. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11:1223–1230

    PubMed  CAS  Google Scholar 

  2. Karas SP, Gravanis MB, Santoian EC, Robinson KA, Anderberg KA, King SB (1992) Coronary intimal proliferation after balloon injury and stenting in swine: an animal model of restenosis. J Am Coll Cardiol 20:467–474

    Article  PubMed  CAS  Google Scholar 

  3. Tepe G, Wendel HP, Khorchidi S, Schmehl J, Wiskirchen J, Pusich B, Claussen CD, Duda SH (2002) Thrombogenicity of various endovascular stent types: an in-vitro evaluation. J Vasc Interv Radiol 13:1029–1035

    Article  PubMed  Google Scholar 

  4. Morvay Z, Nagy E, Bagi R, Abraham G, Sipka R, Palko A (2004) Sonographic follow-up after visceral artery stenting. J Ultrasound 23:1057–1064

    Google Scholar 

  5. Ascher E, Mazzariol F, Hingorani A, Saller-Cunha S, Gade P (1999) The use of duplex ultrasound arterial mapping as an alternative to conventional arteriography for primary and secondary infrapopliteal bypasses. Am J Surg 178:162–165

    Article  PubMed  CAS  Google Scholar 

  6. Herborn CU, Goyen M, Quick HH, Bosk S, Massing S, Kroeger K, Stoesser D, Ruehm SG, Debatin JF (2004) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol 182:1427–1434

    PubMed  Google Scholar 

  7. Roche KJ, Rivera R, Argilla M, Fefferman NR, Pinkney LP, Rusinek H, Genieser NB (2004) Assessment of vasculature using combined MRI and MR angiography. AJR Am J Roentgenol 182:861–866

    PubMed  Google Scholar 

  8. Link J, Steffens J, Brossmann J, Gaessner J, Hackethal S, Heller M (1999) Iliofemoral arterial occlusive disease: contrast-enhanced MR angiography for preinterventional evaluation and follow-up after stent placement. Radiology 212:371–377

    PubMed  CAS  Google Scholar 

  9. Sueyoshi E, Sakamoto I, Matsuoka Y, Ogawa Y, Hayashi H, Hashmi R, Hayashi K (1999) Aotoiliac and lower extremity arteries: comparison of three-dimensional dynamic contrast-enhanced subtraction MR angiography and conventional angiography. Radiology 210:683–686

    PubMed  CAS  Google Scholar 

  10. Loewe C, Schoder M, Rand T, Hoffmann U, Sailer J, Kos T, Lammer J, Thurher S (2002) Peripheral vascular occlusive disease: evaluation with contrast-enhanced moving-bed MR angiography versus digital subtraction angiography in 106 patients. AJR Am J Roentgenol 179:1013–1021

    PubMed  Google Scholar 

  11. Rubin GD (2003) CT angiography of the thoracic aorta. Semin Roentgenol 38:115–134

    Article  PubMed  Google Scholar 

  12. Romano M, Mainenti PP, Imbriaco M, Amato B, Markabaoui K, Tamburrini O, Salvatore M (2004) Multidetector row CT angiography of the abdominal aorta and lower extremities in patients with peripheral arterial occlusive disease: diagnostic accuracy and interobserver agreement. Eur J Radiol 50:303–308

    Article  PubMed  Google Scholar 

  13. Catalano C, Fraioli F, Laghi A, Napoli A, Bezzi M, Pediconi F, Danti M, Nofroni I, Passariello R (2004) Infrarenal aortic and lower-extremity arterial disease: diagnostic performance of multi-detector row CT angiography. Radiology 231:555–563

    Article  PubMed  Google Scholar 

  14. Laissy JP, Grand C, Matoos C, Struyven J, Berger JF, Schouman-Claeys E (1995) Magnetic resonance angiography of intravascular endoprostheses: investigation of three devices. Cardiovasc Intervent Radiol 198:725–732

    Google Scholar 

  15. Lenhart M, Volk M, Manke C, Nitz WR, Strotzer M, Feuerbach S, Link J (2000) Stent appearance at contrast-enhanced MR angiography: in vitro examination with 14 stents. Radiology 217:173–178

    PubMed  CAS  Google Scholar 

  16. Maintz D, Kugel H, Schellhammer F, Landwehr P (2001) In vitro evaluation of intravascular stent artifacts in three-dimensional MR angiography. Invest Radiol 36:218–224

    Article  PubMed  CAS  Google Scholar 

  17. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U (1999) Subsecond multidetector-row computed tomography: basics and applications. Eur J Radiol 31:110–124

    Article  PubMed  CAS  Google Scholar 

  18. Maintz D, Fischbach R, Juergens KU, AllkemperT, Wessling J, Heindel W (2001) Multislice CT angiography of the iliac arteries in the presence of various stents: in vitro evaluation of artifacts and lumen visibility. Invest Radiol 36:699–704

    Article  PubMed  CAS  Google Scholar 

  19. Masaryk AM, Frayne R, Unal O, Rappe AH, Strother CM (2000) Utility of CT angiography and MR angiography for the follow-up of experimental aneurysms treated with stents or Guglielmi detachable coils. AJNR Am J Neuroradiol 21:1523–1531

    PubMed  CAS  Google Scholar 

  20. Leclerc X, Gauvrit JY, Pruvo JP (2000) Usefulness of CT angiography with volume rendering after carotid angioplasty and stenting. AJR Am J Roentgenol 174:820–822

    PubMed  CAS  Google Scholar 

  21. Hong C, Chrysant GS, Woodard PK, Bae KT (2004) Coronary artery stent patency assessed with in-stent contrast enhancement measured at multi-detector row CT angiography: initial experience. Radiology 233:286–291

    Article  PubMed  Google Scholar 

  22. Herzog C, Grebe C, Mahnken A, Balzer JO, Mack MG, Zangos S, Ackermann H, Schaller S, Seifert T, Ohnesorge B, Vogl TJ (2005) Peripheral artery stent visualization and in-stent stenosis analysis in 16-row computed tomography: an in-vitro evaluation. Eur Radiol 15:2276–2283

    Article  PubMed  Google Scholar 

  23. Suzuki S, Furui S, Kaminaga T, Yamauchi T (2004) Measurement of cascular diameter in vitro by automated software for CT angiography: effect of inner diameter, density of contrast medium, and convolution kernel. AJR Am J Roentgenol 182:1313–1317

    PubMed  Google Scholar 

  24. Pozzi Mucelli F, Fisicaro M, Calderan L, Malacrea M, Mazzone C, Cattin L, Scardi S, Pozzi Mucelli R (2003) Percutaneous revascularization of femoropoliteal artery disease: PTA and PTA plus stent. Results after six years’ follow-up. Radiol Med 105:229–349

    Google Scholar 

  25. Cejna M, Thurnher S, Illiasch H, Horvath W, Waldenberger P, Hornik K, Lammer J (2001) PTA versus Palmaz stent placement in femoropoliteal artery obstructions: a multicenter study. J Vasc Interv Radiol 12:23–31

    Article  PubMed  CAS  Google Scholar 

  26. Roth SM, Bandyk DF (1999) Duplex imaging of lower extremity bypasses, angioplasties and stents. Semi Vasc Sug 12:275–284

    CAS  Google Scholar 

  27. Hilfiker P, Quick H, Debatin J (1999) Plain and covered stent-grafts: in vitro evaluation of characteristics at three-dimensional MR angiography. Radiology 211:693–697

    PubMed  CAS  Google Scholar 

  28. Maintz D, Tombach Bernd, Juergens KU, Weigel S, Heindel W, Fischbach R (2002) Revealing in-stent stenoses of the iliac arteries: comparison of multidetector CT with MR angiography and digital radiographic angiography in a phantom model. AJR Am J Roentgenol 179:1319–1322

    PubMed  Google Scholar 

  29. Cademartiri F, Mollet N, Nieman K, Krestin GP, deFeyter PJ (2003) Images in cardiovascular medicine. Neointimal hyperplasia in carotid stent detected with multislice computed tomography. Circulation 108:147

    Article  Google Scholar 

  30. Hahnel S, Tossbach M, Braun C, Heiland S, Knauth M, Sartor K, Hartmann M (2003) Small-vessel stents for intracranial angioplasty: in vitro comparison of different stent designs and sizes by using CT angiography. AJNR Am J Neuroradiol 24:1512–1516

    PubMed  Google Scholar 

  31. Maintz D, Juergens KU, Wichert T, Grude M, Heindel W, Fischbach R (2003) Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation. Eur Radiol 13:830–835

    PubMed  Google Scholar 

  32. Kruger S, Mahnken AH, Sinha AM, Borghans A, Dedden K, Hoffmann R, Hanrath P (2003) Multislice spiral computed tomography fort he detection of coronary stent restenosis and patency. International J Cardiol 89:167–172

    Google Scholar 

  33. Mahnken H, Buecker A, Wildberger JE, Ruebben A, stanzel S, Vogt F, Gunther RW, Blindt R (2004) Coronary artery stents in multislice computed tomography: in vitro artefact evaluation. Invest Radiol 39:27–33

    Article  PubMed  Google Scholar 

  34. Seifarth H, Raupach R, Schaller S, Fallenberg EM, Flohr T, Heindel W, Fischbach R, Maintz D (2005) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15:721–726

    Article  PubMed  Google Scholar 

  35. Kalra MK, Maher MM, Sahani DV, Blake MA, Hahn PF, Avinash GB, Toth TL, Halpern E, Saini S (2003) Low-dose CT of the abdomen: evaluation of image improvement with use of noise reduction filters pilot study. Radiology 228:251–256

    Article  PubMed  Google Scholar 

  36. Fleischmann D (2003) Use of high concentration contrast media: principles and rationale- vascular district. Eur J Radiol 45(Suppl 1):S88–S93

    Article  PubMed  Google Scholar 

  37. Jakobs TF, Becker CR, Wintersperger BJ, Herzog P, Ohnesorge B, Flohr T, Knez A, Reiser MF (2002) CT angiography of the coronary arteries with a 16–row spiral tomograph. Effect of spatial resolution on image quality. Radiologe 42:733–738

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the radiographers Ayser Birinci and Regina Pfau for their excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Heuschmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuschmid, M., Wiesinger, B., Tepe, G. et al. Evaluation of various image reconstruction parameters in lower extremity stents using multidetector-row CT angiography: initial findings. Eur Radiol 17, 265–271 (2007). https://doi.org/10.1007/s00330-006-0315-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0315-1

Keywords

Navigation