Skip to main content
Log in

Gray matter-white matter contrast on spin-echo T1-weighted images at 3 T and 1.5 T: a quantitative comparison study

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Discrepancies exist in the literature regarding contrast between gray and white matter on spin-echo (SE) T1-weighted MR imaging at 3 T. The present study quantitatively assessed differences in gray matter-white matter contrast on both single- and multi-slice SE T1-weighted imaging between 3 and 1.5 T. SE T1-weighted sequences with the same parameters at both 3 and 1.5 T were used. Contrast-to-noise ratio (CNR) between gray and white matter (CNRGM-WM) was evaluated for both frontal lobes. To assess the effects of interslice gap, multi-slice images were obtained with both 0 and 25% interslice gap. Single-slice CNRGM-WM was higher at 3 T (17.66 ± 2.68) than at 1.5 T (13.09 ± 2.35; P < 0.001). No significant difference in CNRGM-WM of multi-slice images with 0% gap was noted between 3 and 1.5 T (3T, 8.61 ± 2.55; 1.5T, 7.43 ± 1.20; P > 0.05). Multi-slice CNRGM-WM with 25% gap was higher at 3T (12.47 ± 3.31) than at 1.5 T (9.73 ± 1.37; P < 0.001). CNRGM-WM reduction rate of multi-slice images with 0% gap compared with single-slice images was higher at 3T (0.47 ± 0.13) than at 1.5 T (0.38 ± 0.09; P = 0.02). CNRGM-WM on single-slice SE T1-weighted imaging and CNRGM-WM on multi-slice images with 25% interslice gap were better at 3 T than at 1.5 T. The influence of multi-slice imaging on CNRGM-WM was significantly larger at 3T than at 1.5 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoenig K, Kuhl CK, Scheef L (2005) Functional 3.0-T MR assessment of higher cognitive function: are there advantages over 1.5-T imaging? Radiology 234:860–868

    Article  PubMed  Google Scholar 

  2. Manka C, Traber F, Gieseke J, Schild HH, Kuhl CK (2005) Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Radiology 234:869–877

    Article  PubMed  Google Scholar 

  3. Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402

    Article  PubMed  Google Scholar 

  4. Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959

    Article  PubMed  Google Scholar 

  5. Moser E, Trattnig S (2003) 3.0 Tesla MR systems. Invest Radiol 38:375–376

    Article  PubMed  Google Scholar 

  6. Kuhl CK, Textor J, Gieseke J, von Falkenhausen M, Gernert S, Urbach H, Schild HH (2005) Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 234:509–516

    Article  PubMed  Google Scholar 

  7. Okada T, Miki Y, Fushimi Y, Hanakawa T, Kanagaki M, Yamamoto A, Urayama S, Fukuyama H, Hiraoka M, Togashi K (2006) Diffusion-tensor fiber tractography: intraindividual comparison of 3.0-T and 1.5-T MR imaging. Radiology 238:668–678

    Article  PubMed  Google Scholar 

  8. Bernstein MA, Huston J 3rd, Lin C, Gibbs GF, Felmlee JP (2001) High-resolution intracranial and cervical MRA at 3.0T: technical considerations and initial experience. Magn Reson Med 46:955–962

    Article  PubMed  CAS  Google Scholar 

  9. Fushimi Y, Miki Y, Kikuta K, Okada T, Kanagaki M, Yamamoto A, Nozaki K, Hashimoto N, Hanakawa T, Fukuyama H, Togashi K (2006) Comparison of 3.0- and 1.5-T three-dimensional time-of-flight MR angiography in Moyamoya disease: preliminary experience. Radiology 239:232–237

    Article  PubMed  Google Scholar 

  10. Nobauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V, Barth M, Schoggl A, Heimberger K, Matula C, Fog A, Kaider A, Trattnig S (2002) Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla. Invest Radiol 37:114–119

    Article  PubMed  Google Scholar 

  11. Scarabino T, Nemore F, Giannatempo GM, Bertolino A, Di Salle F, Salvolini U (2003) 3.0 T magnetic resonance in neuroradiology. Eur J Radiol 48:154–164

    Article  PubMed  Google Scholar 

  12. Sasaki M, Inoue T, Tohyama K, Oikawa H, Ehara S, Ogawa A (2003) High-field MRI of the central nervous system: current approaches to clinical and microscopic imaging. Magn Reson Med Sci 2:133–139

    Article  PubMed  Google Scholar 

  13. Ross JS (2004) The high-field-strength curmudgeon. AJNR Am J Neuroradiol 25:168–169

    PubMed  Google Scholar 

  14. Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC (2005) Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 22:13–22

    Article  PubMed  Google Scholar 

  15. Schmitz BL, Gron G, Brausewetter F, Hoffmann MH, Aschoff AJ (2005) Enhancing gray-to-white matter contrast in 3 T T1 spin-echo brain scans by optimizing flip angle. AJNR Am J Neuroradiol 26:2000–2004

    PubMed  Google Scholar 

  16. Constable RT, Henkelman RM (1991) Contrast, resolution, and detectability in MR imaging. J Comput Assist Tomogr 15:297–303

    Article  PubMed  CAS  Google Scholar 

  17. Majumdar S, Sostman HD, MacFall JR (1989) Contrast and accuracy of relaxation time measurements in acquired and synthesized multislice magnetic resonance images. Invest Radiol 24:119–127

    Article  PubMed  CAS  Google Scholar 

  18. Schmitz BL, Aschoff AJ, Hoffmann MH, Gron G (2005) Advantages and pitfalls in 3T MR brain imaging: a pictorial review. AJNR Am J Neuroradiol 26:2229–2237

    PubMed  Google Scholar 

  19. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512

    Article  PubMed  Google Scholar 

  20. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K (2001) 7 T vs. 4 T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30

    Article  PubMed  CAS  Google Scholar 

  21. Collins CM, Liu W, Schreiber W, Yang QX, Smith MB (2005) Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 21:192–196

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Miki.

Additional information

This study was supported in part by a Health and Labour Sciences Research Grant of Japan

Yasutaka Fushimi and Yukio Miki equally contributed to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fushimi, Y., Miki, Y., Urayama, Si. et al. Gray matter-white matter contrast on spin-echo T1-weighted images at 3 T and 1.5 T: a quantitative comparison study. Eur Radiol 17, 2921–2925 (2007). https://doi.org/10.1007/s00330-007-0688-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0688-9

Keywords

Navigation