Skip to main content
Log in

Whole-body computed tomography for multiple traumas using a triphasic injection protocol

  • Emergency Radiology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To evaluate a triphasic injection protocol for whole-body multidetector computed tomography (MDCT) in patients with multiple trauma. Fifty consecutive patients (41 men) were examined. Contrast medium (300 mg/mL iodine) was injected starting with 70 mL at 3 mL/s, followed by 0.1 mL/s for 8 s, and by another bolus of 75 mL at 4 mL/s. CT data acquisition started 50 s after the beginning of the first injection. Two experienced, blinded readers independently measured the density in all major arteries, veins, and parenchymatous organs. Image quality was assessed using a five-point ordinal rating scale and compared to standard injection protocols [n = 25 each for late arterial chest, portovenous abdomen, and MDCT angiography (CTA)]. With the exception of the infrarenal inferior caval vein, all blood vessels were depicted with diagnostic image quality using the multiple-trauma protocol. Arterial luminal density was slightly but significantly smaller compared to CTA (P < 0.01). Veins and parenchymatous organs were opacified significantly better compared to all other protocols (P < 0.01). Arm artifacts reduced the density of spleen and liver parenchyma significantly (P < 0.01). Similarly high image quality is achieved for arteries using the multiple-trauma protocol compared to CTA, and parenchymatous organs are depicted with better image quality compared to specialized protocols. Arm artifacts should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Linsenmaier U (1998) Disputed concept in polytrauma: whole-body spiral CT as primary diagnosis. Röfo 168:306

    PubMed  CAS  Google Scholar 

  2. Linsenmaier U, Krotz M, Hauser H, Rock C, Rieger J, Bohndorf K, Pfeifer KJ, Reiser M (2002) Whole-body computed tomography in polytrauma: techniques and management. Eur Radiol 12:1728–1740

    Article  PubMed  Google Scholar 

  3. Gralla J, Spycher F, Pignolet C, Ozdoba C, Vock P, Hoppe H (2005) Evaluation of a 16-MDCT scanner in an emergency department: initial clinical experience and workflow analysis. AJR 185:232–238

    PubMed  Google Scholar 

  4. Hoppe H, Vock P, Bonel HM, Ozdoba C, Gralla J (2006) A novel multiple-trauma CT-scanning protocol using patient repositioning. Emerg Radiol 13:123–128

    Article  PubMed  Google Scholar 

  5. Wedegartner U, Lorenzen M, Nagel HD, Weber C, Adam G (2004) Diagnostic imaging in polytrauma: comparison of radiation exposure from whole-body MSCT and conventional radiography with organ-specific CT. Röfo 176:1039–1044

    PubMed  CAS  Google Scholar 

  6. Rademacher G, Stengel D, Siegmann S, Petersein J, Mutze S (2002) Optimization of contrast agent volume for helical CT in the diagnostic assessment of patients with severe and multiple injuries. J Comput Assist Tomogr 26:113–138

    Article  PubMed  Google Scholar 

  7. Awai K, Imuta M, Utsunomiya D, Nakaura T, Shamima S, Kawanaka K, Hori S, Yamashita Y (2004) Contrast enhancement for whole-body screening using multidetector row helical CT: comparison between uniphasic and biphasic injection protocols. Radiat Med 22:303–309

    PubMed  Google Scholar 

  8. Jäger L, Bonel H, Liebl M, Srivastav S, Arbusow V, Hempel M, Reiser M (2005) CT of the normal temporal bone: comparison of multi- and single-detector row CT. Radiology 235:133–141

    Article  PubMed  Google Scholar 

  9. Bonel HM, Jager L, Frei KA, Galiano S, Srivastav SK, Flohr T, Reiser MF, Dinkel HP (2005) Optimization of MDCT of the wrist to achieve diagnostic image quality with minimum radiation exposure. AJR 185:647–654

    PubMed  Google Scholar 

  10. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374

    Article  PubMed  CAS  Google Scholar 

  11. Bae KT, Tran HQ, Heiken JP (2000) Multiphasic injection method for uniform prolonged vascular enhancement at CT angiography: pharmacokinetic analysis and experimental porcine model. Radiology 216:872–880

    PubMed  CAS  Google Scholar 

  12. Zandrino F, Curone P, Benzi L, Musante F (2003) Value of an early arteriographic acquisition for evaluating the splanchnic vessels as an adjunct to biphasic CT using a multislice scanner. Eur Radiol 13:1072–1079

    PubMed  CAS  Google Scholar 

  13. Kirkpatrick ID, Kroeker MA, Greenberg HM (2003) Biphasic CT with mesenteric CT angiography in the evaluation of acute mesenteric ischemia: initial experience. Radiology 229:91–98

    Article  PubMed  Google Scholar 

  14. Chung YE, Kim KW, Kim JH, Lim JS, Oh YT, Chung JJ, Kim MJ (2006) Optimal delay time for the hepatic parenchymal enhancement at the multidetector CT examination. J Comput Assist Tomogr 30:182–188

    Article  PubMed  Google Scholar 

  15. Mehnert F, Pereira PL, Trubenbach J, Kopp AF, Claussen CD (2001) Automatic bolus tracking in monophasic spiral CT of the liver: liver-to-lesion conspicuity. Eur Radiol 11:580–584

    Article  PubMed  CAS  Google Scholar 

  16. Benneker LM, Bonel H, Zumstein MA, Exadakytlos A (2007) A novel multiple-trauma CT-scanning protocol using patient repositioning may increase risks of iatrogenic injuries. Emerg Radiol 13:349–351

    Article  PubMed  CAS  Google Scholar 

  17. Hoppe H, Gralla J (2007) Invited comment on the work of Benneker et al. “A novel multiple-trauma CT-scanning protocol using patient repositioning may increase risks of iatrogenic injuries”. Emerg Radiol 13:353

    Article  Google Scholar 

  18. Bae KT, Tao C, Gurel S, Hong C, Zhu F, Gebke TA, Milite M, Hidebolt CF (2007) Effect of patient weight and scanning duration on contrast enhancement during pulmonary multidetector CT angiography. Radiology 242:582–589

    Article  PubMed  Google Scholar 

  19. Suzuki H, Oshima H, Shiraki N, Ikeya C, Shibamoto Y (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein, and liver at multi-detector row CT: a randomized study. Eur Radiol 14:2099–2104

    Article  PubMed  Google Scholar 

  20. Park SJ, Kim JK, Kim KW, Cho KS (2006) MDCT findings in renal trauma. AJR 187(5):1146

    Google Scholar 

  21. Tunaci A, Yekeler E (2004) Multidetector row CT of the kidneys. Eur J Radiol 52:53–66

    Google Scholar 

  22. Engeroff B, Kopka L, Harz C, Grabbe E (2001) Impact of different iodine concentrations on abdominal enhancement in biphasic multislice helical CT (MS-CT). Röfo 173:938–941

    PubMed  CAS  Google Scholar 

  23. Blow O, Magliore L, Claridge JA, Butler K, Young YS (1999) The golden hour and silver day: detection and correction of hypoperfusion within 24 hours improves outcome from major trauma. J Trauma 27:964–969

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Marcel Bonel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loupatatzis, C., Schindera, S., Gralla, J. et al. Whole-body computed tomography for multiple traumas using a triphasic injection protocol. Eur Radiol 18, 1206–1214 (2008). https://doi.org/10.1007/s00330-008-0875-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0875-3

Keywords

Navigation