Skip to main content
Log in

Local skin and eye lens equivalent doses in interventional neuroradiology

  • Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess patient skin and eye lens doses in interventional neuroradiology and to assess both stochastic and deterministic radiation risks.

Methods

Kerma–area product (P KA) was recorded and skin doses measured using thermoluminescence dosimeters. Estimated dose at interventional reference point (IRP) was compared with measured absorbed doses.

Results

The average and maximum fluoroscopy times were 32 and 189 min for coiling and 40 and 144 min for embolisation. The average and maximum P KA for coiling were 121 and 436 Gy cm2, respectively, and 189 and 677 Gy cm2 for embolisation. The average and maximum values of the measured maximum absorbed skin doses were 0.72 and 3.0 Sv, respectively, for coiling and 0.79 and 2.1 Sv for embolisation. Two out of the 52 patients received skin doses in excess of 2 Sv. The average and maximum doses to the eye lens (left eye) were 51 and 515 mSv (coiling) and 71 and 289 mSv (embolisation).

Conclusion

The ratio between the measured dose and the dose at the IRP was 0.44 ± 0.18 mSv/mGy indicating that the dose displayed by the x-ray unit overestimates the maximum skin dose but is still a valuable indication of the dose. The risk of inducing skin erythema and lens cataract during our hospital procedures is therefore small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Valentin J, ICRP (2000) ICRP publication 85: avoidance of radiation injuries from medical interventional procedures. Ann ICRP 30(2):7–67

  2. WHO (2000) Efficacy and radiation safety in interventional radiology. World Health Organization, Geneva. ISBN 13 9789241545297, ISBN 10 9241545291

  3. Koenig TR, Detlev W, Mettler FA, Wagner LK (2001) Skin injuries from fluoroscopically guided procedures. Part 1, characteristics of radiation injury. AJR Am J Roentgenol 177:3–11

    CAS  PubMed  Google Scholar 

  4. Padovani R, Bernardi G, Quai E, Signor M, Toh HS, Morocutti G, Spedicato L (2005) Retrospective evaluation of occurrence of skin injuries in interventional cardiac procedures. Radiat Prot Dosim 117:247–250

    Article  CAS  Google Scholar 

  5. Vano E, Faulkner K (2006) ICRP special radiation protection issues in interventional radiology, digital and cardiac imaging. Radiat Prot Dosim 117:13–17

    Article  CAS  Google Scholar 

  6. Faulkner K, Malone J, Vano E, Padovani R, Busch HP, Zoetelief J, Bosmans H (2008) The SENTINEL project. Radiat Prot Dosim 129:3–5

    Article  CAS  Google Scholar 

  7. Kosunen A, Komppa T, Toivonen M (2005) Evaluation of methods to estimate the patient dose in interventional radiology. Radiat Prot Dosim 117:178–184

    Article  CAS  Google Scholar 

  8. Van Dam J, Bosmans H, Marchal G, Wambersie A (2005) Characteristics of dosimeter types for skin dose measurement in practice. Radiat Prot Dosim 177:185–189

    Google Scholar 

  9. Balter S, Moses J (2007) Managing patient dose in interventional cardiology. Catherterization and cardiovascular interventions. 70:244–249

    Article  Google Scholar 

  10. International Commission on Radiation Units and Measurements (ICRU) (2005) Patient dosimetry for x rays used in medical imaging (report 74). J ICRU 5(2):i. ISSN 1473–6691, ISBN 0199203208

  11. IAEA (2007) Dosimetry in diagnostic radiology: an international code of practice. Technical reports series No 457. International Atomic Energy Agency (IAEA), Vienna. ISSN 0074–1914, ISBN 92–0–115406–2

  12. Chida K, Saito H, Otani H, Kohzuki M, Takahashi S, Yamada S, Shirato K, Zuguchi M (2006) Relationship between fluoroscopy time, dose-area product, body weight and maximum skin dose in cardiac interventional procedures. AJR Am J Roentgenol 186:774–778

    Article  PubMed  Google Scholar 

  13. Vano E, Gonzalez L, Guibelalde E, Aviles P, Fernandez JM, Prieto C, Galvan C (2005) Evaluation of risk of deterministic effects in fluoroscopically guided procedures. Radiat Prot Dosim 117:190–194

    Article  CAS  Google Scholar 

  14. Swedish Radiation Protection Authority (SSI) (2002) The Swedish Radiation Protection Authority’s regulations and general advice on diagnostic standard doses and reference levels within medical x-ray diagnostics. SSI FS 2002:2 (also published as regulation SSMFS 2008:20). http://www.stralsakerhetsmyndigheten.se/In-English/Regulations/Radiation-protection/. Accessed 2 Mar 2009

  15. Neofotistou V, Vano E, Padovani R, Kotre J, Dowling A, Toivonen M, Kottou S, Tsapaki V, Willis S, Bernardi G, Faulkner K (2003) Preliminary reference levels in interventional cardiology. Eur Radiol 13:2259–2263

    Article  CAS  PubMed  Google Scholar 

  16. Vano E, Järvinen H, Kosunen A, Bly R, Malone J, Dowling A, Larkin A, Padovani R, Bosmans H, Dragusin O, Jaschke W, Torbica P, Back C, Schreiner A, Bokou C, Kottou S, Tsapaki V, Jankowski J, Papierz S, Domienik J, Werduch A, Nikodemova D, Salat D, Kepler K, Bor MD, Vassileva J, Borisova R, Pellet S, Corbett RH (2008) Patient dose in interventional radiology: a European survey. Radiat Prot Dosim 129:39–45

    Article  CAS  Google Scholar 

  17. Balter S, Miller DL, Vano E, Ortis Lopes P, Bernardi G, Cotelo E, Faulkner K, Nowotny R, Padovani R, Ramirez A (2008) A pilot study exploring the possibility of establishing guidance levels in x-ray directed interventional procedures. Med Phys 35:673–680

    Article  CAS  PubMed  Google Scholar 

  18. Faulkner K, Ortiz-Lopes P, Vano E (2005) Patient dosimetry in diagnostic radiology and interventional radiology: a practical approach using trigger levels. Radiat Prot Dosim 117:166–168

    Google Scholar 

  19. International Electrotechnical Commission (IEC) (2000) Standard 60601–2–43. Medical electrical equipment, part 2–43: particular requirements for the safety of X-ray equipment for interventional procedures

  20. Rampada O, Rapolo R (2004) A method for real time estimation of entrance skin dose distribution in interventional neuroradiology. Med Phys 31:2356–2361

    Article  Google Scholar 

  21. Nishizawa K, Moritake T, Matsumaru Y, Tsuboi K, Iwai K (2003) Dose measurements for patients and physicians using a glass dosimeter during endovascular treatment for brain disease. Rad Prot Dosim 107:247–252

    CAS  Google Scholar 

  22. Padovani R, Quai E (2005) Patient dosimetry approaches in interventional cardiology and literature dose data review. Radiat Prot Dosim 117:217–221

    Article  CAS  Google Scholar 

  23. Theodorakou C, Horrocks JA (2003) A study on radiation doses and irradiated areas in cerebral embolisation. Br J Radiol 76:546–552

    Article  CAS  PubMed  Google Scholar 

  24. Bergeron P, Carrier R, Roy D, Blais N, Raymond J (1994) Radiation doses to patients in neurointerventional procedures. AJNR Am J Neuroradiol 15(10):1809–1812

    CAS  PubMed  Google Scholar 

  25. Mooney RB, McKinstry CS, Kamel HA (2000) Absorbed doses and deterministic effects to patients from interventional neuroradiology. Br J Radiol 73(871):745–751

    CAS  PubMed  Google Scholar 

  26. Kuwayama N, Takaku A, Endo S, Nishijima M, Kamei T (1994) Radiation exposure in endovascular surgery of the head and neck. AJNR Am J Neuroradiol 15(10):1801–1808

    CAS  PubMed  Google Scholar 

  27. Gkanatsios NA, Huda W, Peters KR (2002) Adult patient doses in interventional neuroradiology. Med Phys 29:717–723

    Article  PubMed  Google Scholar 

  28. Alberts WG, Böhm J, Kramer HM, Iles WJ, Schwartz RB, Thompson IMG (1994) International standardization of reference radiations and calibration procedures for radiation protection instruments. In: Kölzer W, Maushart R (eds) Strahlenschutz: Physik und Meßtechnik, vol 1. Verlag TüV Rheinland, pp 181–188

  29. ICRP (2007) ICRP publication 103: recommendations of the IRCP. Ann ICRP 37:2–4

    Google Scholar 

  30. Computerized Imaging Reference Systems (CIRS) (2002) ATOM: adult female phantom handling instructions. http://www.cirsinc.com,admin@cirsinc.com. Accessed 2 Mar 2009

  31. Moritake T, Matsumau Y, Takigawa T, Nishizawa K, Matsumura A, Tsuboi K (2008) Dose measurements on both patients and operators during neurointerventional procedures using photoluminescence glass dosimeters. AJNR Am J Neuroradiol 29:1910–1917

    Article  CAS  PubMed  Google Scholar 

  32. Persliden (2005) Patient and staff doses in interventional x-ray procedures in Sweden. Radiat Prot Dosim 114:150–157

Download references

Acknowledgements

We would like to acknowledge Ursula Windolf for manually recording the patient doses after each session and Magnus Gårdestig for calibrating and analysing the TLDs. This work was conducted in part within the Centre for Medical Imaging Sciences and Visualisation (CMIV) at Linköping University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sandborg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandborg, M., Rossitti, S. & Pettersson, H. Local skin and eye lens equivalent doses in interventional neuroradiology. Eur Radiol 20, 725–733 (2010). https://doi.org/10.1007/s00330-009-1598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1598-9

Keywords

Navigation