Skip to main content
Log in

Iodine contrast iso-attenuating with diagnostic gadolinium doses in CTA and angiography results in ultra-low iodine doses. A way to avoid both CIN and NSF in azotemic patients?

  • Contrast Media
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To establish iodine (I) contrast medium (CM) doses iso-attenuating with gadolinium (Gd) CM doses regarded diagnostic in CTA and percutaneous catheter-angiography/vascular interventions (PCA/PVI) in azotemic patients.

Methods

CT Hounsfield units (HU) were measured in 20-mL syringes containing 0.01/0.02,/0.05/0.1 mmol/mL of iodine or gadolinium atoms and placed in phantoms. Relative contrast were measured in 20-mL syringes filled with iohexol at 35/50/70/90/110/140 mg I/mL and 0.5 M gadodiamide using radiofluoroscopy (RF), digital radiography (DX) and x-ray angiography (XA) systems. Clinical doses of Gd-CM at CTA/PCA/PVI were reviewed.

Results

At CT 91-116 and 104–125 mg I/mL in the chest and abdominal phantoms, respectively, were iso-attenuating with 0.5 M Gd at 80–140 kVp. At RF/DX/XA systems 35–90 mg I/mL were iso-attenuating with 0.5 M gadodiamide at 60–115 kVp. Clinically, 60 mL 91–125 mg I/mL (5.5–7.5 gram-iodine) at 80–140 kVp CTA and 60 mL of 35–90 mg I/mL (2.1–5.4 gram-iodine) at 60–115 kVp PCA/PVI would be iso-attenuating with 60 mL 0.5 M Gd-CM (=0.4 mmol Gd/kg in a 75-kg person).

Conclusions

Meticulous examination technique and judicious use of ultra-low I-CM doses iso-attenuating with diagnostic Gd-CM doses in CTA and PCA/PVI may minimise the risk of nephrotoxicity in azotemic patients, while there is no risk of NSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification (2002) Part 4. Definition and classification of stages of chronic kidney disease. Am J Kidney Dis 39:S46–S75

    Google Scholar 

  2. Lind Ramskov K, Thomsen HS (2009) Nephrogenic systemic fibrosis and contrast medium-induced nephropathy: a choice between the devil and the deep blue sea for patients with reduced renal function? Acta Radiol 50:965–967

    Article  CAS  PubMed  Google Scholar 

  3. Thomsen HS (2009) How to avoid nephrogenic systemic fibrosis: current guidelines in Europe and the United States. Radiol Clin North Am 47:871–875

    Article  PubMed  Google Scholar 

  4. Thomsen HS (2009) Nephrogenic systemic fibrosis: history and epidemiology. Radiol Clin North Am 47:827–831

    Article  PubMed  Google Scholar 

  5. Mehran R, Nikolsky E (2006) Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int Suppl 69:S11–S15

    Article  Google Scholar 

  6. McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F, Tumlin J (2006) Risk prediction of contrast-induced nephropathy. Am J Cardiol 98:27K–36K

    Article  PubMed  Google Scholar 

  7. Kaufman JA, Geller SC, Waltman AC (1996) Renal insufficiency: gadopentetate dimeglumine as a radiographic contrast agent during peripheral vascular interventional procedures. Radiology 198:579–581

    CAS  PubMed  Google Scholar 

  8. Kaufman JA, Hu S, Geller SC, Waltman AC (1999) Selective angiography of the common carotid artery with gadopentetate dimeglumine in a patient with renal insufficiency. AJR Am J Roentgenol 172:1613–1614

    CAS  PubMed  Google Scholar 

  9. Erly WK, Zaetta J, Borders GT, Ozgur H, Gabaeff DR, Carmody RF, Seeger J (2000) Gadopentetate dimeglumine as a contrast agent in common carotid arteriography. AJNR Am J Neuroradiol 21:964–967

    CAS  PubMed  Google Scholar 

  10. Spinosa DJ, Kaufmann JA, Hartwell GD (2002) Gadolinium chelates in angiography and interventional radiology: a useful alternative to iodinated contrast media for angiography. Radiology 223:319–325, discussion 326–317

    Article  CAS  PubMed  Google Scholar 

  11. Spinosa DJ, Angle JF, Hartwell GD, Hagspiel KD, Leung DA, Matsumoto AH (2002) Gadolinium-based contrast agents in angiography and interventional radiology. Radiol Clin North Am 40:693–710

    Article  PubMed  Google Scholar 

  12. Sancak T, Bilgic S, Sanldilek U (2002) Gadodiamide as an alternative contrast agent in intravenous digital subtraction angiography and interventional procedures of the upper extremity veins. Cardiovasc Intervent Radiol 25:49–52

    Article  PubMed  Google Scholar 

  13. Rieger J, Sitter T, Toepfer M, Linsenmaier U, Pfeifer KJ, Schiffl H (2002) Gadolinium as an alternative contrast agent for diagnostic and interventional angiographic procedures in patients with impaired renal function. Nephrol Dial Transplant 17:824–828

    Article  PubMed  Google Scholar 

  14. Ailawadi G, Stanley JC, Williams DM, Dimick JB, Henke PK, Upchurch GR Jr (2003) Gadolinium as a nonnephrotoxic contrast agent for catheter-based arteriographic evaluation of renal arteries in patients with azotemia. J Vasc Surg 37:346–352

    Article  PubMed  Google Scholar 

  15. Harb TS, Laird JR, Dieter RS, Reddy BK, Whitman D, Babrowicz JC, Satler LF (2004) Renal artery stenting using gadodiamide arteriography in patients with baseline renal insufficiency. J Endovasc Ther 11:553–559

    Article  PubMed  Google Scholar 

  16. Strunk HM, Schild H (2004) Actual clinical use of gadolinium-chelates for non-MRI applications. Eur Radiol 14:1055–1062

    Article  PubMed  Google Scholar 

  17. Voss R, Grebe M, Heidt M, Erdogan A (2004) Use of gadobutrol in coronary angiography. Catheter Cardiovasc Interv 63:319–322

    Article  PubMed  Google Scholar 

  18. Remy-Jardin M, Bahepar J, Lafitte JJ, Dequiedt P, Ertzbischoff O, Bruzzi J, Delannoy-Deken V, Duhamel A, Remy J (2006) Multi-detector row CT angiography of pulmonary circulation with gadolinium-based contrast agents: prospective evaluation in 60 patients. Radiology 238:1022–1035

    Article  PubMed  Google Scholar 

  19. Kane GC, Stanson AW, Kalnicka D, Rosenthal DW, Lee CU, Textor SC, Garovic VD (2008) Comparison between gadolinium and iodine contrast for percutaneous intervention in atherosclerotic renal artery stenosis: clinical outcomes. Nephrol Dial Transplant 23:1233–1240

    Article  CAS  PubMed  Google Scholar 

  20. Prince MR, Arnoldus C, Frisoli JK (1996) Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging 6:162–166

    Article  CAS  PubMed  Google Scholar 

  21. Buhaescu I, Izzedine H (2008) Gadolinium-induced nephrotoxicity. Int J Clin Pract 62:1113–1118

    Article  CAS  PubMed  Google Scholar 

  22. Ledneva E, Karie S, Launay-Vacher V, Janus N, Deray G (2009) Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology 250:618–628

    Article  PubMed  Google Scholar 

  23. Nyman U, Elmståhl B, Leander P, Nilsson M, Golman K, Almén T (2002) Are gadolinium-based contrast media really safer than iodinated media for digital subtraction angiography in patients with azotemia? Radiology 223:311–318, discussion 328–319

    Article  PubMed  Google Scholar 

  24. Elmståhl B, Nyman U, Leander P, Chai CM, Frennby B, Almén T (2004) Gadolinium contrast media are more nephrotoxic than a low osmolar iodine medium employing doses with equal X-ray attenuation in renal arteriography: an experimental study in pigs. Acad Radiol 11:1219–1228

    Article  PubMed  Google Scholar 

  25. Elmstahl B, Nyman U, Leander P, Golman K, Chai CM, Grant D, Doughty R, Pehrson R, Bjork J, Almen T (2008) Iodixanol 320 results in better renal tolerance and radiodensity than do gadolinium-based contrast media: arteriography in ischemic porcine kidneys. Radiology 247:88–97

    Article  PubMed  Google Scholar 

  26. Hoppe H, Spagnuolo S, Froehlich JM, Nievergelt H, Dinkel HP, Gretener S, Thoeny HC (2010) Retrospective analysis of patients for development of nephrogenic systemic fibrosis following conventional angiography using gadolinium-based contrast agents. Eur Radiol 20:595–603

    Article  PubMed  Google Scholar 

  27. Digital Imaging and Communication in Medicine (DICOM) (2003) Part 3: Information object definitions. . National Electrical Manufactures Association. Available via http://medical.nema.org/dicom/2003/03_03PU.PDF . Accessed 11 June, 2010

  28. Storm E, Israel H (1970) Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100. In: Nuclear data tables. Vol 7, section A. NY Academic Press, New York

  29. Quinn AD, O’Hare NJ, Wallis FJ, Wilson GF (1994) Gd-DTPA: an alternative contrast medium for CT. J Comput Assist Tomogr 18:634–636

    Article  CAS  PubMed  Google Scholar 

  30. Bonvento MJ, Moore WH, Button TM, Weinmann HJ, Yakupov R, Dilmanian FA (2006) CT angiography with gadolinium-based contrast media. Acad Radiol 13:979–985

    Article  PubMed  Google Scholar 

  31. Schmidt C, Theilmeier G, Van Aken H, Korsmeier P, Wirtz SP, Berendes E, Hoffmeier A, Meissner A (2005) Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth 95:603–610

    Article  CAS  PubMed  Google Scholar 

  32. Luboldt W, De Santis M, von Smekal A, Reiser M (1997) Attenuation characteristics and application of gadolinium-DTPA in fast helical computed tomography. Investig Radiol 32:690–695

    Article  CAS  Google Scholar 

  33. Smadja L, Remy-Jardin M, Dupuis P, Deken-Delannoy V, Devos P, Duhamel A, Laffitte JJ, Dequiedt P, Remy J (2009) Gadolinium-enhanced thoracic CTA: retrospective analysis of image quality and tolerability in 45 patients evaluated prior to the description of nephrogenic systemic fibrosis. J Radiol 90:287–298

    Article  CAS  PubMed  Google Scholar 

  34. Gul KM, Mao SS, Gao Y, Oudiz RJ, Rasouli ML, Gopal A, Budoff MJ (2006) Noninvasive gadolinium-enhanced three dimensional computed tomography coronary angiography. Acad Radiol 13:840–849

    Article  PubMed  Google Scholar 

  35. Albrecht T, Dawson P (2000) Gadolinium-DTPA as X-ray contrast medium in clinical studies. Br J Radiol 73:878–882

    CAS  PubMed  Google Scholar 

  36. Chicoskie C, Tello R (2005) Gadolinium-enhanced MDCT angiography of the abdomen: feasibility and limitations. AJR Am J Roentgenol 184:1821–1828, Erratum in AJR Am J Roentgenol 184, June 2005

    PubMed  Google Scholar 

  37. Esteban JM, Alonso A, Cervera V, Martinez V (2007) One-molar gadolinium chelate (gadobutrol) as a contrast agent for CT angiography of the thoracic and abdominal aorta. Eur Radiol 17:2394–2400

    Article  PubMed  Google Scholar 

  38. Wicky S, Greenfield A, Fan CM, Geller SC, Hamberg LM, Hoffmann U, Waltman AC (2004) Aortoiliac gadolinium-enhanced CT angiography: improved results with a 16-detector row scanner compared with a four-detector row scanner. J Vasc Interv Radiol 15:947–954

    PubMed  Google Scholar 

  39. Johnson PT, Naidich D, Fishman EK (2007) MDCT for suspected pulmonary embolism: multi-institutional survey of 16-MDCT data acquisition protocols. Emerg Radiol 13:243–249

    Article  PubMed  Google Scholar 

  40. Thomsen HS, Morcos SK, Erley CM, Grazioli L, Bonomo L, Ni Z, Romano L (2008) The ACTIVE Trial: comparison on the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Investig Radiol 43:170–178

    Article  CAS  Google Scholar 

  41. Weisbord SD, Mor MK, Resnick AL, Hartwig KC, Palevsky PM, Fine MJ (2008) Incidence and outcomes of contrast-induced AKI following computed tomography. Clin J Am Soc Nephrol 3:1274–1281

    Article  PubMed  Google Scholar 

  42. Kristiansson M, Holmquist F, Nyman U (2010) Ultralow contrast medium doses at CT to diagnose pulmonary embolism in patients with moderate to severe renal impairment. A feasibility study. Eur Radiol 20:1321–1330

    Article  PubMed  Google Scholar 

  43. Bae KT, Mody GN, Balfe DM, Bhalla S, Gierada DS, Gutierrez FR, Menias CO, Woodard PK, Goo JM, Hildebolt CF (2005) CT depiction of pulmonary emboli: display window settings. Radiology 236:677–684

    Article  PubMed  Google Scholar 

  44. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS (2003) Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 41:1–12

    Article  PubMed  Google Scholar 

  45. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW (2003) Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108:2154–2169

    Article  PubMed  Google Scholar 

  46. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 207:657–662

    CAS  PubMed  Google Scholar 

  47. Husmann L, Alkadhi H, Boehm T, Leschka S, Schepis T, Koepfli P, Desbiolles L, Marincek B, Kaufmann PA, Wildermuth S (2006) Influence of cardiac hemodynamic parameters on coronary artery opacification with 64-slice computed tomography. Eur Radiol 16:1111–1116

    Article  PubMed  Google Scholar 

  48. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, Mintz GS, Lansky AJ, Moses JW, Stone GW, Leon MB, Dangas G (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44:1393–1399

    PubMed  Google Scholar 

  49. Kawano T, Ishijima H, Nakajima T, Aoki J, Endo K (1999) Gd-DTPA: a possible alternative contrast agent for use in CT during intraarterial administration. J Comput Assist Tomogr 23:939–940

    Article  CAS  PubMed  Google Scholar 

  50. Cardinal HN, Holdsworth DW, Drangova M, Hobbs BB, Fenster A (1993) Experimental and theoretical x-ray imaging performance comparison of iodine and lanthanide contrast agents. Med Phys 20:15–31

    Article  CAS  PubMed  Google Scholar 

  51. Amar AP, Larsen DW, Teitelbaum GP (2001) Percutaneous carotid angioplasty and stenting with the use of gadolinium in lieu of iodinated contrast medium: technical case report and review of the literature. Neurosurgery 49:1262–1265, discussion 1265–1266

    Article  CAS  PubMed  Google Scholar 

  52. Bokhari SW, Wen YH, Winters RJ (2003) Gadolinium-based percutaneous coronary intervention in a patient with renal insufficiency. Catheter Cardiovasc Interv 58:358–361

    Article  PubMed  Google Scholar 

  53. Spinosa DJ, Angle JF, Hagspiel KD, Kern JA, Hartwell GD, Matsumoto AH (2000) Lower extremity arteriography with use of iodinated contrast material or gadodiamide to supplement CO2 angiography in patients with renal insufficiency. J Vasc Interv Radiol 11:35–43

    Article  CAS  PubMed  Google Scholar 

  54. Spinosa DJ, Matsumoto AH, Angle JF, Hagspiel KD, Cage D, Bissonette EA, Koenig KG, Ayers CR, McConnell K (2001) Safety of CO(2)- and gadodiamide-enhanced angiography for the evaluation and percutaneous treatment of renal artery stenosis in patients with chronic renal insufficiency. AJR Am J Roentgenol 176:1305–1311

    CAS  PubMed  Google Scholar 

  55. Sterner G, Nyman U, Valdes T (2001) Low risk of contrast-medium-induced nephropathy with modern angiographic technique. J Intern Med 250:429–434

    Article  CAS  PubMed  Google Scholar 

  56. Barcin C, Kursaklioglu H, Iyisoy A, Kose S, Tore HF, Isik E (2006) Safety of gadodiamide mixed with a small quantity of iohexol in patients with impaired renal function undergoing coronary angiography. Heart Vessels 21:141–145

    Article  PubMed  Google Scholar 

  57. Sarkis A, Badaoui G, Azar R, Sleilaty G, Bassil R, Jebara VA (2003) Gadolinium-enhanced coronary angiography in patients with impaired renal function. Am J Cardiol 91(974–975):A974

    Article  Google Scholar 

  58. Gupta R, Uretsky BF (2005) Gadodiamide-based coronary angiography in a patient with severe renal insufficiency. J Interv Cardiol 18:379–383

    Article  PubMed  Google Scholar 

  59. Zwicker C, Langer M, Urich V, Felix R (1993) CT contrast administration of iodine, gadolinium and ytterbium. In-vitro studies and animal experiments. Rofo 158:255–259

    CAS  PubMed  Google Scholar 

  60. Schmitz SA, Wagner S, Schuhmann-Giampieri G, Wolf KJ (1995) Evaluation of gadobutrol in a rabbit model as a new lanthanide contrast agent for computed tomography. Investig Radiol 30:644–649

    Article  CAS  Google Scholar 

  61. Gierada DS, Bae KT (1999) Gadolinium as a CT contrast agent: assessment in a porcine model. Radiology 210:829–834

    CAS  PubMed  Google Scholar 

  62. Heinrich MC, Kuhlmann MK, Kohlbacher S, Scheer M, Grgic A, Heckmann MB, Uder M (2007) Cytotoxicity of iodinated and gadolinium-based contrast agents in renal tubular cells at angiographic concentrations: in vitro study. Radiology 242:425–434

    Article  PubMed  Google Scholar 

  63. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS (1998) XCOM: Photon cross section data base. NIST Standard reference database 8 (XGAM). Available via http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html. Accessed 7 February, 2010

  64. Cranely K, Gilmore BJ, Fogarty GWA, Desponds L (1997) Electronic formate by Sutton D. Cataloque of Diagnostic X-Ray Spectra & Other Data. IPEM report 78. The Institute of Physics and Engineering in Medicine. York

Download references

Acknowledgement

Librarian Elisabeth Sassersson, Lasarettet Trelleborg, for excellent service regarding literature references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Nyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyman, U., Elmståhl, B., Geijer, H. et al. Iodine contrast iso-attenuating with diagnostic gadolinium doses in CTA and angiography results in ultra-low iodine doses. A way to avoid both CIN and NSF in azotemic patients?. Eur Radiol 21, 326–336 (2011). https://doi.org/10.1007/s00330-010-1924-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1924-2

Keywords

Navigation