Skip to main content
Log in

Magnetic resonance angiography of the carotid arteries: comparison of unenhanced and contrast enhanced techniques

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare different techniques for carotid imaging including contrast-enhanced, unenhanced and dynamic techniques to find an alternative to contrast-enhanced MRA.

Methods

43 patients referred for imaging of the carotids were enrolled in this IRB-approved study. Imaging included dark-blood, time-of-flight, ECG-gated SSFP and dynamic and static contrast-enhanced MRA. Two radiologists evaluated all datasets in terms of image quality (vessel lumen, signal homogeneity, diagnostic confidence, preferred technique) on a four-point Likert-scale and in measuring the vessel area.

Results

Of the 43 included patients the first 8 subjects served for protocol optimisation and 4 individuals discontinued the examination. Thus 31 datasets served for evaluation. CE-MRA revealed best results for delineation of vessel lumen, signal homogeneity and diagnostic confidence with values of 3.61, 3.42 and 3.77. It was also rated as the most preferred technique. SSFP-MRA was rated second in all categories with values of 3.1, 2.9 and 3.11. This unenhanced technique was the only one showing non-significantly different results in quantitative analysis.

Conclusion

SSFP-MRA, an unenhanced form of MRA, represents an alternative to CE-MRA, particularly in patients where administration of gadolinium for CE-MRA may be contraindicated. In contrast to other techniques, SSFP-MRA serves with not significant different results compared to standard CE-MRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prabhakaran P, Ajay VS, Prabhakaran D et al (2007) Global cardiovascular disease research survey. J Am Coll Cardiol 50:2322–2328

    Article  PubMed  Google Scholar 

  2. Reddy KS (2004) Cardiovascular disease in non-Western countries. N Engl J Med 350:2438–2440

    Article  PubMed  CAS  Google Scholar 

  3. Reddy KS, Yusuf S (1998) Emerging epidemic of cardiovascular disease in developing countries. Circulation 97:596–601

    PubMed  CAS  Google Scholar 

  4. Rothwell PM, Coull AJ, Silver LE et al (2005) Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study). Lancet 366:1773–1783

    Article  PubMed  CAS  Google Scholar 

  5. Remonda L, Senn P, Barth A, Arnold M, Lovblad KO, Schroth G (2002) Contrast-enhanced 3D MR angiography of the carotid artery: comparison with conventional digital subtraction angiography. AJNR Am J Neuroradiol 23:213–219

    PubMed  Google Scholar 

  6. Sundgren PC, Sunden P, Lindgren A, Lanke J, Holtas S, Larsson EM (2002) Carotid artery stenosis: contrast-enhanced MR angiography with two different scan times compared with digital subtraction angiography. Neuroradiology 44:592–599

    Article  PubMed  CAS  Google Scholar 

  7. Anzalone N, Scomazzoni F, Castellano R et al (2005) Carotid artery stenosis: intraindividual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conventional DSA, and rotational angiography for detection and grading. Radiology 236:204–213

    Article  PubMed  Google Scholar 

  8. Boudewijn G, Vasbinder C, Nelemans PJ (2005) Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Perspect Vasc Surg Endovasc Ther 17:180

    Google Scholar 

  9. Carroll TJ, Korosec FR, Petermann GM, Grist TM, Turski PA (2001) Carotid bifurcation: evaluation of time-resolved three-dimensional contrast-enhanced MR angiography. Radiology 220:525–532

    PubMed  CAS  Google Scholar 

  10. Cloft HJ, Joseph GJ, Dion JE (1999) Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: a meta-analysis. Stroke 30:317–320

    Article  PubMed  CAS  Google Scholar 

  11. Kido DK, Barsotti JB, Rice LZ et al (1991) Evaluation of the carotid artery bifurcation: comparison of magnetic resonance angiography and digital subtraction arch aortography. Neuroradiology 33:48–51

    Article  PubMed  CAS  Google Scholar 

  12. Ross JS, Masaryk TJ, Ruggieri PM (1991) Magnetic resonance angiography of the carotid bifurcation. Top Magn Reson Imaging 3:12–22

    Article  PubMed  CAS  Google Scholar 

  13. Yang CW, Carr JC, Futterer SF et al (2005) Contrast-enhanced MR angiography of the carotid and vertebrobasilar circulations. AJNR Am J Neuroradiol 26:2095–2101

    PubMed  Google Scholar 

  14. Clevert DA, Johnson T, Michaely H et al (2006) High-grade stenoses of the internal carotid artery: comparison of high-resolution contrast enhanced 3D MRA, duplex sonography and power Doppler imaging. Eur J Radiol 60:379–386

    Article  PubMed  Google Scholar 

  15. Kaufmann TJ, Kallmes DF (2005) Utility of MRA and CTA in the evaluation of carotid occlusive disease. Semin Vasc Surg 18:75–82

    Article  PubMed  Google Scholar 

  16. Hollingworth W, Nathens AB, Kanne JP et al (2003) The diagnostic accuracy of computed tomography angiography for traumatic or atherosclerotic lesions of the carotid and vertebral arteries: a systematic review. Eur J Radiol 48:88–102

    Article  PubMed  Google Scholar 

  17. Schernthaner R, Stadler A, Lomoschitz F et al (2008) Multidetector CT angiography in the assessment of peripheral arterial occlusive disease: accuracy in detecting the severity, number, and length of stenoses. Eur Radiol 18:665–671

    Article  PubMed  CAS  Google Scholar 

  18. Bui TD, Gelfand D, Whipple S et al (2005) Comparison of CT and catheter arteriography for evaluation of peripheral arterial disease. Vasc Endovascular Surg 39:481–490

    Article  PubMed  Google Scholar 

  19. Lim RP, Shapiro M, Wang EY et al (2008) 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol 29:1847–1854

    Article  PubMed  CAS  Google Scholar 

  20. Nederkoorn PJ, van der Graaf Y (2009) MRA for carotid artery stenosis. Stroke 40:e77, author reply e78

    Article  PubMed  Google Scholar 

  21. Thurnher SA (2005) MRA of the carotid arteries. Eur Radiol 15:E11–E16

    Article  PubMed  Google Scholar 

  22. Isoda H, Takehara Y, Isogai S et al (1998) Technique for arterial-phase contrast-enhanced three-dimensional MR angiography of the carotid and vertebral arteries. AJNR Am J Neuroradiol 19:1241–1244

    PubMed  CAS  Google Scholar 

  23. Wildermuth S, Debatin JF, Huisman TA, Leung DA, McKinnon GC (1995) 3D phase contrast EPI MR angiography of the carotid arteries. J Comput Assist Tomogr 19:871–878

    Article  PubMed  CAS  Google Scholar 

  24. Sardanelli F, Zandrino F, Parodi RC, De Caro G (1999) MR angiography of internal carotid arteries: breath-hold Gd-enhanced 3D fast imaging with steady-state precession versus unenhanced 2D and 3D time-of-flight techniques. J Comput Assist Tomogr 23:208–215

    Article  PubMed  CAS  Google Scholar 

  25. Wilman AH, Huston J 3rd, Riederer SJ (1997) Three-dimensional magnetization-prepared time-of-flight MR angiography of the carotid and vertebral arteries. Magn Reson Med 37:252–259

    Article  PubMed  CAS  Google Scholar 

  26. Buxton RB, Kerber CW, Frank LR (1993) Pulsatile flow artifacts in two-dimensional time-of-flight MR angiography: initial studies in elastic models of human carotid arteries. J Magn Reson Imaging 3:625–636

    Article  PubMed  CAS  Google Scholar 

  27. Marchal G, Michiels J, Bosmans H, Van Hecke P (1992) Contrast-enhanced MRA of the brain. J Comput Assist Tomogr 16:25–29

    Article  PubMed  CAS  Google Scholar 

  28. Nael K, Ruehm SG, Michaely HJ et al (2006) High spatial-resolution CE-MRA of the carotid circulation with parallel imaging: comparison of image quality between 2 different acceleration factors at 3.0 Tesla. Invest Radiol 41:391–399

    Article  PubMed  Google Scholar 

  29. Loewe C, Schillinger M, Haumer M et al (2004) MRA versus DSA in the assessment of occlusive disease in the aortic arch vessels: accuracy in detecting the severity, number, and length of stenoses. J Endovasc Ther 11:152–160

    Article  PubMed  Google Scholar 

  30. Willinek WA, von Falkenhausen M, Born M et al (2005) Noninvasive detection of steno-occlusive disease of the supra-aortic arteries with three-dimensional contrast-enhanced magnetic resonance angiography: a prospective, intra-individual comparative analysis with digital subtraction angiography. Stroke 36:38–43

    Article  PubMed  Google Scholar 

  31. Nokes SR (2001) Elliptic centric contrast enhanced MRA provides high resolution, noninvasive evaluation of the carotid/vertebral arteries. J Ark Med Soc 98(83):88

    Google Scholar 

  32. Thomsen HS, Marckmann P, Logager VB (2007) Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents. Cancer Imaging 7:130–137

    Article  PubMed  Google Scholar 

  33. Thomsen HS, Morcos SK, Dawson P (2006) Is there a causal relation between the administration of gadolinium based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin Radiol 61:905–906

    Article  PubMed  CAS  Google Scholar 

  34. Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16:2619–2621

    Article  PubMed  Google Scholar 

  35. Stivaros SM, Harris JN, Adams W, Jackson A (2009) Does black blood MRA have a role in the assessment of intracerebral aneurysms? Eur Radiol 19:184–192

    Article  PubMed  Google Scholar 

  36. Potthast S, Mitsumori L, Stanescu LA, et al (2010) Measuring aortic diameter with different MR techniques: comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J Magn Reson Imaging 31:177–184

    Google Scholar 

  37. Tello R, Mitchell PJ, Witte DJ, Thomson KR (2003) T2 dark blood MRA for renal artery stenosis detection: preliminary observations. Comput Med Imaging Graph 27:11–16

    Article  PubMed  Google Scholar 

  38. Tanaka H, Numaguchi Y, Konno S, Shrier DA, Shibata DK, Patel U (1997) Initial experience with helical CT and 3D reconstruction in therapeutic planning of cerebral AVMs: comparison with 3D time-of-flight MRA and digital subtraction angiography. J Comput Assist Tomogr 21:811–817

    Article  PubMed  CAS  Google Scholar 

  39. Cronqvist M, Stahlberg F, Larsson EM, Lonntoft M, Holtas S (1996) Evaluation of time-of-flight and phase-contrast MRA sequences at 1.0 T for diagnosis of carotid artery disease. I. A phantom and volunteer study. Acta Radiol 37:267–277

    Article  PubMed  CAS  Google Scholar 

  40. Dagirmanjian A, Ross JS, Obuchowski N et al (1995) High resolution, magnetization transfer saturation, variable flip angle, time-of-flight MRA in the detection of intracranial vascular stenoses. J Comput Assist Tomogr 19:700–706

    Article  PubMed  CAS  Google Scholar 

  41. Herborn CU, Watkins DM, Runge VM, Gendron JM, Montgomery ML, Naul LG (2006) Renal arteries: comparison of steady-state free precession MR angiography and contrast-enhanced MR angiography. Radiology 239:263–268

    Article  PubMed  Google Scholar 

  42. Maki JH, Wilson GJ, Eubank WB, Glickerman DJ, Pipavath S, Hoogeveen RM (2007) Steady-state free precession MRA of the renal arteries: breath-hold and navigator-gated techniques vs CE-MRA. J Magn Reson Imaging 26:966–973

    Article  PubMed  Google Scholar 

  43. Voth M, Haneder S, Huck K, Gutfleisch A, Schonberg SO, Michaely HJ (2009) Peripheral magnetic resonance angiography with continuous table movement in combination with high spatial and temporal resolution time-resolved MRA With a total single dose (0.1 mmol/kg) of gadobutrol at 3.0 T. Invest Radiol 44:627–633

    Article  PubMed  Google Scholar 

  44. Kramer H, Zenge M, Schmitt P, Glaser C, Reiser MF, Herrmann KA (2008) Peripheral magnetic resonance angiography (MRA) with continuous table movement at 3.0 T: initial experience compared with step-by-step MRA. Invest Radiol 43:627–634

    Article  PubMed  Google Scholar 

  45. Klessen C, Hein PA, Huppertz A et al (2007) First-pass whole-body magnetic resonance angiography (MRA) using the blood-pool contrast medium gadofosveset trisodium: comparison to gadopentetate dimeglumine. Invest Radiol 42:659–664

    Article  PubMed  Google Scholar 

  46. Nael K, Fenchel M, Krishnam M, Finn JP, Laub G, Ruehm SG (2007) 3.0 Tesla high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) of the pulmonary circulation: initial experience with a 32-channel phased array coil using a high relaxivity contrast agent. Invest Radiol 42:392–398

    Article  PubMed  CAS  Google Scholar 

  47. Fenchel M, Nael K, Deshpande VS et al (2006) Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Invest Radiol 41:697–703

    Article  PubMed  Google Scholar 

  48. Kramer U, Nael K, Laub G et al (2006) High-resolution magnetic resonance angiography of the renal arteries using parallel imaging acquisition techniques at 3.0 T: initial experience. Invest Radiol 41:125–132

    Article  PubMed  Google Scholar 

  49. Fain SB, King BF, Breen JF, Kruger DG, Riederer SJ (2001) High-spatial-resolution contrast-enhanced MR angiography of the renal arteries: a prospective comparison with digital subtraction angiography. Radiology 218:481–490

    PubMed  CAS  Google Scholar 

  50. Kang JW, Lim TH, Choi CG, Ko GY, Kim JK, Kwon TW (2010) Evaluation of contrast-enhanced magnetic resonance angiography (MRA) using Gd-DOTA compared with time-of-flight MRA in the diagnosis of clinically significant non-coronary arterial disease. Eur Radiol 20:1934–1944

    Google Scholar 

  51. Schoenberg SO, Rieger J, Weber CH et al (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235:687–698

    Article  PubMed  Google Scholar 

  52. McCarthy RM, Deshpande VS, Beohar N et al (2007) Three-dimensional breathhold magnetization-prepared TrueFISP: a pilot study for magnetic resonance imaging of the coronary artery disease. Invest Radiol 42:665–670

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors like to thank Gary R McNeal from Siemens Healthcare for his valuable support in the optimization process of all used sequences as well as Jilene Gendron and Vincent Mundy for their continuous tremendous helped during execution of all exams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, H., Runge, V.M., Morelli, J.N. et al. Magnetic resonance angiography of the carotid arteries: comparison of unenhanced and contrast enhanced techniques. Eur Radiol 21, 1667–1676 (2011). https://doi.org/10.1007/s00330-011-2110-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2110-x

Keywords

Navigation