Skip to main content
Log in

Impact of iterative reconstruction on CNR and SNR in dynamic myocardial perfusion imaging in an animal model

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate a new iterative reconstruction (IR) algorithm for radiation dose, image quality (IQ), signal-to-noise-ratio (SNR), and contrast-to-noise-ratio (CNR) in multidetector computed tomography (MDCT) dynamic myocardial perfusion imaging (MPI).

Methods

ECG-gated 256-slice MDCT dynamic MPI was performed in six pigs after subtotal balloon occlusion of one artery. Two 100 kVp protocols were compared: high dose (HD): 150 mAs; low dose (LD): 100 mAs. HD images were reconstructed with filtered back projection (FBP), LD images with FBP and different strengths of IR (L1, L4, and L7). IQ (5-point scale), SNR, and CNR (ischemic vs. normal myocardium) values derived from the HD (FBP) images and the different LD images were compared.

Results

Mean SNR values for myocardium were 16.3, 11.3, 13.1, 17.1, and 28.9 for the HD, LD (FBP), LD (L1), LD (L4), and LD (L7) reconstructions, respectively. Mean CNR values were 8.9, 6.3, 7.8, 9.3, and 12.8. IQ was scored as 4.6, 3.3, 4.4, 4.7, and 3.4, respectively. A significant loss of IQ was observed for the LD (L7) images compared to the HD (FBP) images (P < 0.05).

Conclusion

Appropriate levels of iterative reconstruction can improve SNR and CNR, facilitating radiation dose savings in CT-MPI without influencing diagnostic quality.

Key Points

Iterative reconstruction (IR) can reduce radiation dose in myocardial perfusion CT.

Our study also demonstrated improvements in image quality (noise, SNR, and CNR).

Dynamic CT-MPI could help determine the hemodynamic significance of coronary artery disease.

With dynamic CT MPI, myocardial blood flow can be determined quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–e

Similar content being viewed by others

Abbreviations

CCTA:

Coronary CT angiography

CNR:

Contrast-to-noise ratio

CT:

Computed tomography

FBP:

Filtered back projection

HD:

High dose

IQ:

Image quality

IR:

Iterative reconstruction

LD:

Low dose

MDCT:

Multidetector CT

MPI:

Myocardial perfusion imaging

ROI:

Region of interest

SNR:

Signal-to-noise ratio

References

  1. Berrington de González A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077

    Article  PubMed  Google Scholar 

  2. Gerber TC, Kantor B, Mc Collough CH (2009) Radiation dose and safety in cardiac computed tomography. Cardiol Clin 27:665–677

    Article  PubMed  Google Scholar 

  3. Leipsic J, LaBounty TM, Heilbron B et al (2010) Adaptive statistical iterative reconstruction: assessment of image noise in coronary CT angiography. AJR Am J Roentgenol 195:649–654

    Article  PubMed  Google Scholar 

  4. Knesaurek K, Machac J, Vallabhajosula S, Buchsbaum MS (1996) A new iterative reconstruction technique for attenuation correction in high-resolution positron emission tomography. Eur J Nucl Med 23:656–661

    Article  PubMed  CAS  Google Scholar 

  5. Thibault JB, Sauer KD, Bouman CA, Hsieh J (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34:4526–4544

    Article  PubMed  Google Scholar 

  6. Gervaise A, Osemont B, Lecocq S, et al (2012) CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22:295–301

    Google Scholar 

  7. Bittencourt MS, Schmidt B, Seltmann M et al (2011) Iterative reconstruction in image space (IRIS) in cardiac computed tomography: initial experience. Int J Cardiovasc Imaging 27:1081–1087

    Article  PubMed  Google Scholar 

  8. Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254:145–153

    Article  PubMed  Google Scholar 

  9. Heilbron BG, Leipsic J (2010) Submillisievert coronary computed tomography angiography using adaptive statistical iterative reconstruction—a new reality. Can J Cardiol 25:35–36

    Article  Google Scholar 

  10. Halliburton SS (2009) Recent technologic advances in multi-detector row cardiac CT. Cardiol Clin 27:655–664

    Article  PubMed  Google Scholar 

  11. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193:764–771

    Article  PubMed  Google Scholar 

  12. Prakash P, Kalra MK, Digumarthy SR et al (2010) Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr 34:40–45

    Article  PubMed  Google Scholar 

  13. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W (2010) Innovations in CT dose reduction strategy: application of adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194:191–199

    Article  PubMed  Google Scholar 

  14. Noel PB, FIngerle AA, Renger B, Muenzel D, Rummeny EJ, Dobritz M (2011) Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol 197:1494–1409

    Article  Google Scholar 

  15. Hosch W, Stiller W, Mueller D et al (2011) Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction. Eur Radiol Jun 29. [Epub ahead of print]

  16. Muenzel D, Noel PB, Dorn F, Dobritz M, Rummeny EJ, Huber A (2010) Coronary CT angiography in step-and-shoot technique with 256-slice CT: impact of the field of view on image quality, carniocaudal coverage, and radiation exposure. Eur J Radiol. doi:10.1016/j.ejrad.2011.06.055. Accessed 21 Nov 2011

  17. Stolzmann P, Scheffel H, Schertler T et al (2008) Radiation dose estimates in dual source computed tomography coronary angiography. Eur Radiol 18:592–599

    Article  PubMed  Google Scholar 

  18. Morhard D, Wirth CD, Fesl G et al (2010) Advantages of extended brain computed tomography: 9.6 cm coverage with time resolved computed tomography-angiography in comparison to standard stroke-computed tomography. Invest Radiol 45:363–369

    PubMed  Google Scholar 

  19. Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260:689–698

    Article  PubMed  Google Scholar 

  20. Bamberg F, Hinkel R, Schwarz F, Sandner TA et al (2012) Accuracy of dynamic computed tomography adenosine stress myocardial perfusion imaging in estimating myocardial blood flow at various degrees of coronary artery stenosis using a porcine animal model. Invest Radiol 47:71–77

    Article  PubMed  Google Scholar 

  21. Bamberg F, Koltz E, Flohr T et al (2010) Dynamic myocardial stress perfusion imaging using fast dual-source CT with alternating table positions: initial experience. Eur Radiol 20:1168–1173

    Article  PubMed  Google Scholar 

  22. Mahnken AH, Klotz E, Pietsch H et al (2010) Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: preliminary animal experience. Invest Radiol 45:298–305

    PubMed  Google Scholar 

  23. McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512

    Article  PubMed  Google Scholar 

  24. Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086

    Article  PubMed  Google Scholar 

  25. Abada HT, Larchez C, Daoud B, Sigal-Cinqualbre A, Paul JF (2006) MDCT of coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 186:387–390

    Article  Google Scholar 

  26. Achenbach S, Giesler T, Ropers D et al (2003) Comparison of image quality in contrast-enhanced coronary-artery visualization by electron-beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomography. Invest Radiol 38:119–128

    Article  PubMed  Google Scholar 

  27. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  28. Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D (2006) Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33:4236–4228

    Article  PubMed  Google Scholar 

  29. Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of coronary arteries: comparison on image quality and patient radiation dose. Radiology 248:424–430

    Article  Google Scholar 

  30. Pontone G, Andreini D, Bartorelli AL et al (2009) Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol 54:346–355

    Article  PubMed  Google Scholar 

  31. Klass O, Jeltsch M, Feuerlein S et al (2009) Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique. Eur Radiol 19:829–836

    Article  PubMed  Google Scholar 

  32. Park EA, Lee W, Kang JH, Yin YH, Chung JW, Park JH (2009) The image quality and radiation dose of 100-kVp versus 120-kVp ECG-gated 16-slice CT coronary angiography. Korean J Radiol 10:235–243

    Article  PubMed  Google Scholar 

  33. Dorn F, Muenzel D, Meier R, Poppert H, Rummeny EJ, Huber A (2011) Brain perfusion CT for acute stroke using a 256-slice CT: improvement of diagnostic information by large volume coverage. Eur Radio 21:1803–1810

    Article  CAS  Google Scholar 

  34. Mahnken AH, Brunders P, Muehlenbruch G et al (2007) Low tube voltage improves computed tomography imaging of delayed myocardial contrast enhancement in an experimental acute myocardial infarction model. Invest Radiol 42:123–129

    Article  PubMed  Google Scholar 

  35. Singh S, Kalra MK, Gilman MD et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 259:565–573

    Article  PubMed  Google Scholar 

  36. Leipsic J, Labounty TN, Heilbron B et al (2010) Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography; the ERASIR study. AJR Am J Roentgenol 195:655–660

    Article  PubMed  Google Scholar 

  37. Funama Y, Taguchi K, Utsunomiya D et al (2011) Combination of low-tube-voltage technique with hybrid iterative reconstruction (iDose) algorithm at coronary computed tomographic angiography. J Comput Assist Tomogr 35:480–485

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Gramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramer, B.M., Muenzel, D., Leber, V. et al. Impact of iterative reconstruction on CNR and SNR in dynamic myocardial perfusion imaging in an animal model. Eur Radiol 22, 2654–2661 (2012). https://doi.org/10.1007/s00330-012-2525-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2525-z

Keywords

Navigation