Skip to main content
Log in

Grading of Cerebral Glioma with Multiparametric MR Imaging and 18F-FDG-PET: Concordance and Accuracy

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To retrospectively evaluate concordance rates and predictive values in concordant cases among multiparametric MR techniques and FDG-PET to grade cerebral gliomas.

Methods

Multiparametric MR imaging and FDG-PET were performed in 60 consecutive patients with cerebral gliomas (12 low-grade and 48 high-grade gliomas). As the dichotomic variables, conventional MRI, minimum apparent diffusion coefficient in diffusion-weighted imaging, maximum relative cerebral blood volume ratio in perfusion-weighted imaging, choline/creatine ratio and (lipid and lactate)/creatine ratio in MR spectroscopy, and maximum standardised uptake value ratio in FDG-PET in low- and high-grade gliomas were compared. Their concordance rates and positive/negative predictive values (PPV/NPV) in concordant cases were obtained for the various combinations of multiparametric MR techniques and FDG-PET.

Results

There were significant differences between low- and high-grade gliomas in all techniques. Combinations of two, three, four, and five out of the five techniques showed concordance rates of 77.0 ± 4.8 %, 65.5 ± 4.0 %, 58.3 ± 2.6 % and 53.3 %, PPV in high-grade concordant cases of 97.3 ± 1.7 %, 99.1 ± 1.4 %, 100.0 ± 0 % and 100.0 % and NPV in low-grade concordant cases of 70.2 ± 7.5 %, 78.0 ± 6.0 %, 80.3 ± 3.4 % and 80.0 %, respectively.

Conclusion

Multiparametric MR techniques and FDG-PET have a concordant tendency in a two-tiered classification for the grading of cerebral glioma. If at least two examinations concordantly indicated high-grade gliomas, the PPV was about 95 %.

Key Points

Modern imaging techniques can help predict the aggressiveness of cerebral gliomas.

Multiparametric MRI and FDG-PET have a concordant tendency to grade cerebral gliomas.

Their high-grade concordant cases revealed at least 95 % positive predictive values.

Their low-grade concordant cases revealed about 70–80 % negative predictive values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487

    CAS  PubMed  Google Scholar 

  2. Di Costanzo A, Scarabino T, Trojsi F et al (2006) Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 48:622–631

    Article  PubMed  Google Scholar 

  3. Delbeke D, Meyerowitz C, Lapidus RL et al (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52

    CAS  PubMed  Google Scholar 

  4. Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209

    PubMed  Google Scholar 

  5. Hirai T, Murakami R, Nakamura H et al (2008) Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol 29:1505–1510

    Article  CAS  PubMed  Google Scholar 

  6. Imani F, Boada FE, Lieberman FS, Davis DK, Deeb EL, Mountz JM (2012) Comparison of Proton magnetic resonance spectroscopy with fluorine–18 2–fluoro–deoxyglucose positron emission tomography for assessment of brain tumor progression. J Neuroimaging 22:184–190

    Article  PubMed Central  PubMed  Google Scholar 

  7. J-h K, Chang K-H, Na D et al (2006) 3T 1H-MR spectroscopy in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. AJNR Am J Neuroradiol 27:1412–1418

    Google Scholar 

  8. Dean B, Drayer B, Bird C et al (1990) Gliomas: classification with MR imaging. Radiology 174:411–415

    CAS  PubMed  Google Scholar 

  9. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  10. Yang D, Korogi Y, Sugahara T et al (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44:656–666

    Article  CAS  PubMed  Google Scholar 

  11. Bulakbasi N, Kocaoglu M, Örs F, Tayfun C, Üçöz T (2003) Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am J Neuroradiol 24:225–233

    PubMed  Google Scholar 

  12. Byun HS, Suh DC, Choi KH et al (1994) Tumor grading of adult astrocytic glioma on MR imaging. Korean J Radiol 31:377–384

    Google Scholar 

  13. Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469

    Article  CAS  PubMed  Google Scholar 

  14. Wetzel SG, Cha S, Johnson G et al (2002) Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 224:797–803

    Article  PubMed  Google Scholar 

  15. Gupta RK, Cloughesy TF, Sinha U et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50:215–226

    Article  CAS  PubMed  Google Scholar 

  16. Holodny A, Makeyev S, Beattie B, Riad S, Blasberg R (2010) Apparent diffusion coefficient of glial neoplasms: correlation with fluorodeoxyglucose–positron-emission tomography and gadolinium-enhanced MR imaging. AJNR Am J Neuroradiol 31:1042–1048

    Article  CAS  PubMed  Google Scholar 

  17. Shimizu H, Kumabe T, Shirane R, Yoshimoto T (2000) Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol 21:659–665

    CAS  PubMed  Google Scholar 

  18. Sadeghi N, D’Haene N, Decaestecker C et al (2008) Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic biopsies. AJNR Am J Neuroradiol 29:476–482

    Article  CAS  PubMed  Google Scholar 

  19. Seo H, Chang K-H, Na D, Kwon B, Lee D (2008) High b-value diffusion (b = 3000 s/mm2) MR imaging in cerebral gliomas at 3T: visual and quantitative comparisons with b = 1000 s/mm2. AJNR Am J Neuroradiol 29:458–463

    Article  CAS  PubMed  Google Scholar 

  20. Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486

    Article  CAS  PubMed  Google Scholar 

  21. Hilario A, Ramos A, Perez-Nuñez A et al (2012) The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative grading of diffuse gliomas. AJNR Am J Neuroradiol 33:701–707

    Article  CAS  PubMed  Google Scholar 

  22. Zonari P, Baraldi P, Crisi G (2007) Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 49:795–803

    Article  PubMed  Google Scholar 

  23. Roy B, Gupta RK, Maudsley AA et al. (2013) Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology:1–11

  24. Garzón B, Emblem KE, Mouridsen K et al (2011) Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction. Acta Radiol 52:1052–1060

    Article  PubMed  Google Scholar 

  25. Mills SJ, Soh C, O’Connor JP et al (2009) Tumour enhancing fraction (EnF) in glioma: relationship to tumour grade. Eur Radiol 19:1489–1498

    Article  PubMed  Google Scholar 

  26. Santra A, Kumar R, Sharma P et al (2012) F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol 81:508–513

    Article  PubMed  Google Scholar 

  27. Chung J-K, Kim Y, S-k K et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo-or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    Article  CAS  PubMed  Google Scholar 

  28. Prat R, Galeano I, Lucas A et al (2010) Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion, and 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography for detection of recurrence or grade increase in gliomas. J Clin Neurosci 17:50–53

    Article  CAS  PubMed  Google Scholar 

  29. Kang Y, Choi SH, Kim Y-J et al (2011) Gliomas: histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging—correlation with tumor grade. Radiology 261:882–890

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank So Young Yun for her invaluable assistance in coordinating this study and helping with data collection. This study was funded by 2010 Man Chung Han Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, J.H., Kim, Jh., Kang, W.J. et al. Grading of Cerebral Glioma with Multiparametric MR Imaging and 18F-FDG-PET: Concordance and Accuracy. Eur Radiol 24, 380–389 (2014). https://doi.org/10.1007/s00330-013-3019-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3019-3

Keywords

Navigation