Skip to main content
Log in

Comparison of 3D double inversion recovery and 2D STIR FLAIR MR sequences for the imaging of optic neuritis: pilot study

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

We compared the three-dimensional (3D) double inversion recovery (DIR) magnetic resonance imaging (MRI) sequence with the coronal two-dimensional (2D) short tau inversion recovery (STIR) fluid-attenuated inversion recovery (FLAIR) for the detection of optic nerve signal abnormality in patients with optic neuritis (ON).

Methods

The study group consisted of 31 patients with ON (44 pathological nerves) confirmed by visual-evoked potentials used as the reference. MRI examinations included 2D coronal STIR FLAIR and 3D DIR with 3-mm coronal reformats to match with STIR FLAIR. Image artefacts were graded for each portion of the optic nerves. Each set of MR images (2D STIR FLAIR, DIR reformats and multiplanar 3D DIR) was examined independently and separately for the detection of signal abnormality.

Results

Cisternal portion of optic nerves was better delineated with DIR (p < 0.001), while artefacts impaired analysis in four patients with STIR FLAIR. Inter-observer agreement was significantly improved (p < 0.001) on 3D DIR (κ = 0.96) compared with STIR FLAIR images (κ = 0.60). Multiplanar DIR images reached the best performance for the diagnosis of ON (95 % sensitive and 94 % specific).

Conclusions

Our study showed a high sensitivity and specificity of 3D DIR compared with STIR FLAIR for the detection of ON. These findings suggest that the 3D DIR sequence may be more useful in patients suspected of ON.

Key points

3D DIR is increasingly used in neuroradiology

Compared with STIR FLAIR, 3D DIR improves detection of optic neuritis

Multiplanar analysis had the best diagnostic performance for optic nerve signal abnormalities

Sensitivity was 95 % and specificity 94 %

Findings support the use of 3D DIR instead of 2D sequences

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CSF:

Cerebrospinal fluid

ON:

Optic neuritis

MS:

Multiple sclerosis

RRMS:

Relapsing remitting multiple sclerosis

SPMS:

Secondary progressive multiple sclerosis

CIS:

Clinically isolated syndrome

NMO:

Neuromyelitis optica

DIR:

Double inversion recovery

FLAIR:

Fluid-attenuated inversion recovery

ETL:

Echo train length

TSE:

Turbo spin-echo

STIR:

Short tau inversion recovery

SPIR:

Spectral presaturation inversion recovery

VEP:

Visual-evoked potentials

References

  1. Brodsky MC, Beck RW (1994) The changing role of MR imaging in the evaluation of acute optic neuritis. Radiology 192:22–23

    Article  CAS  PubMed  Google Scholar 

  2. Gass A, Moseley IF, Barker GJ et al (1996) Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI. Neuroradiology 38:317–321

    Article  CAS  PubMed  Google Scholar 

  3. Youl BD, Turano G, Miller DH et al (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114:2437–2450

    Article  PubMed  Google Scholar 

  4. Hickman SJ, Miszkiel KA, Plant GT et al (2005) The optic nerve sheath on MRI in acute optic neuritis. Neuroradiology 47:51–55

    Article  CAS  PubMed  Google Scholar 

  5. Guy J, Mao J, Bidgood WD et al (1992) Enhancement and demyelination of the intraorbital optic nerve. Fat suppression magnetic resonance imaging. Ophthalmology 99:713–719

    Article  CAS  PubMed  Google Scholar 

  6. Hendrix LE, Kneeland JB, Haughton VM et al (1990) MR imaging of optic nerve lesions: value of gadopentetate dimeglumine and fat-suppression technique. AJR Am J Roentgenol 155:849–854

    Article  CAS  PubMed  Google Scholar 

  7. Johnson G, Miller DH, MacManus D et al (1987) STIR sequences in NMR imaging of the optic nerve. Neuroradiology 29:238–245

    Article  CAS  PubMed  Google Scholar 

  8. Jackson A, Sheppard S, Johnson AC et al (1999) Combined fat- and water-suppressed MR imaging of orbital tumors. AJNR Am J Neuroradiol 20:1963–1969

    CAS  PubMed  Google Scholar 

  9. Aiken AH, Mukherjee P, Green AJ et al (2011) MR imaging of optic neuropathy with extended echo-train acquisition fluid-attenuated inversion recovery. AJNR Am J Neuroradiol 32:301–305

    Article  CAS  PubMed  Google Scholar 

  10. McKinney AM, Lohman BD, Sarikaya B et al (2013) Accuracy of routine fat-suppressed FLAIR and diffusion-weighted images in detecting clinically evident optic neuritis. Acta Radiol 54:455–461

    Article  PubMed  Google Scholar 

  11. Busse RF, Hariharan H, Vu A et al (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55:1030–1037

    Article  PubMed  Google Scholar 

  12. Tallantyre EC, Morgan PS, Dixon JE et al (2010) 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J Magn Reson Imaging 32:971–977

    Article  PubMed  Google Scholar 

  13. Simon B, Schmidt S, Lukas C et al (2010) Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol 20:1675–1683

    Article  PubMed Central  PubMed  Google Scholar 

  14. Nelson F, Poonawalla AH, Hou P et al (2007) Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging. AJNR Am J Neuroradiol 28:1645–1649

    Article  CAS  PubMed  Google Scholar 

  15. Wattjes MP, Lutterbey GG, Gieseke J et al (2007) Double inversion recovery brain imaging at 3 T: diagnostic value in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 28:54–59

    Article  CAS  PubMed  Google Scholar 

  16. Pouwels PJ, Kuijer JP, Mugler JP et al (2006) Human gray matter: feasibility of single-slab 3D double inversion-recovery high-spatial-resolution MR imaging. Radiology 241:873–879

    Article  PubMed  Google Scholar 

  17. Geurts JJ, Pouwels PJ, Uitdehaag BM et al (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260

    Article  PubMed  Google Scholar 

  18. de Graaf WL, Zwanenburg JJ, Visser F et al (2012) Lesion detection at seven Tesla in multiple sclerosis using magnetisation prepared 3D-FLAIR and 3D-DIR. Eur Radiol 22:221–231

    Article  PubMed Central  PubMed  Google Scholar 

  19. Harris RJ, Cloughesy TF, Pope WB et al (2013) Pre- and post-contrast three-dimensional double inversion-recovery MRI in human glioblastoma. J Neurooncol 112:257–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Morimoto E, Kanagaki M, Okada T et al (2013) Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging. Euro Radiol 23:3–11

    Article  Google Scholar 

  21. Nam Y, Kim EY, Kim DH (2011) On the use of a spin-echo based double inversion recovery acquisition for the measurement of cortical brain thickness. J Magn Reson Imaging 33:1218–1223

    Article  PubMed  Google Scholar 

  22. Genders TS, Spronk S, Stijnen T et al (2012) Methods for calculating sensitivity and specificity of clustered data: a tutorial. Radiology 265:910–916

    Article  PubMed  Google Scholar 

  23. Schouten HJ (1993) Estimating kappa from binocular data and comparing marginal probabilities. Stat Med 12:2207–2217

    Article  CAS  PubMed  Google Scholar 

  24. Lisanti C, Carlin C, Banks KP et al (2007) Normal MRI appearance and motion-related phenomena of CSF. AJR Am J Roentgenol 188:716–725

    Article  PubMed  Google Scholar 

  25. Bakshi R, Caruthers SD, Janardhan V et al (2000) Intraventricular CSF pulsation artifact on fast fluid-attenuated inversion-recovery MR images: analysis of 100 consecutive normal studies. AJNR Am J Neuroradiol 21:503–508

    CAS  PubMed  Google Scholar 

  26. Naganawa S, Koshikawa T, Nakamura T et al (2004) Comparison of flow artifacts between 2D-FLAIR and 3D-FLAIR sequences at 3 T. Eur Radiol 14:1901–1908

    PubMed  Google Scholar 

  27. Lummel N, Schoepf V, Burke M et al (2011) 3D fluid-attenuated inversion recovery imaging: reduced CSF artifacts and enhanced sensitivity and specificity for subarachnoid hemorrhage. AJNR Am J Neuroradiol 32:2054–2060

    Article  CAS  PubMed  Google Scholar 

  28. Hodel J, Leclerc X, Rodallec M et al (2013) Fluid-attenuated inversion recovery vascular hyperintensities are not visible using 3D CUBE FLAIR sequence. Eur Radiol 23:1963–1969

    Article  PubMed  Google Scholar 

  29. Seewann A, Kooi EJ, Roosendaal SD et al (2012) Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology 78:302–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Prof. Xavier Leclerc. The authors of this manuscript declare relationships with the following company: Philips Medical Systems.

David Chechin is an employee of Philips. The authors state that this work has not received any funding. Mohamed Amine Benadjaoud (co-author) has significant statistical expertise and kindly provided statistical advice for this manuscript. No complex statistical methods were necessary for this paper. Institutional Review Board approval was not required because all the patients included in this retrospective study accepted that their MR images could be use for publication. Written informed consent was not required because all the patients included in this retrospective study accepted that their MR images could be use for publication.Methodology: retrospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Hodel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodel, J., Outteryck, O., Bocher, AL. et al. Comparison of 3D double inversion recovery and 2D STIR FLAIR MR sequences for the imaging of optic neuritis: pilot study. Eur Radiol 24, 3069–3075 (2014). https://doi.org/10.1007/s00330-014-3342-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3342-3

Keywords

Navigation