Skip to main content

Advertisement

Log in

Brain temperature fluctuations during physiological and pathological conditions

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This review discusses brain temperature as a physiological parameter, which is determined primarily by neural metabolism, regulated by cerebral blood flow, and affected by various environmental factors and drugs. First, we consider normal fluctuations in brain temperature that are induced by salient environmental stimuli and occur during motivated behavior at stable normothermic conditions. Second, we analyze changes in brain temperature induced by various drugs that affect brain and body metabolism and heat dissipation. Third, we consider how these physiological and drug-induced changes in brain temperature are modulated by environmental conditions that diminish heat dissipation. Our focus is psychomotor stimulant drugs and brain hyperthermia as a factor inducing or potentiating neurotoxicity. Finally, we discuss how brain temperature is regulated, what changes in brain temperature reflect, and how these changes may affect neural functions under normal and pathological conditions. Although most discussed data were obtained in animals and several important aspects of brain temperature regulation in humans remain unknown, our focus is on the relevance of these data for human physiology and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrams R, Hammel HT (1964) Hypothalamic temperature in unanesthetized albino rats during feeding and sleeping. Am J Physiol 206:641–646

    PubMed  CAS  Google Scholar 

  • Ali SF, Newport GD, Slikker W (1996) Methamphetamine-induced dopaminergic toxicity in mice: role of environmental temperature and pharmacological agents. Ann NY Acad Sci 801:187–198

    PubMed  CAS  Google Scholar 

  • Arai H, Uto A, Ogawa Y, Sato K (1993) Effect of low temperature on glutamate-induced intracellular calcium accumulation and cell death in cultured hippocampal neurons. Neurosci Lett 163:132–134

    PubMed  CAS  Google Scholar 

  • Baker M, Cronin M, Mountjoy D (1976) Variability of skin temperature in the waking monkey. Am J Physiol 230:449–455

    PubMed  CAS  Google Scholar 

  • Berner NJ, Heller HC (1998) Does the preoptic anterior hypothalamus receive thermoafferent information? Am J Physiol 274:R9–R18

    PubMed  CAS  Google Scholar 

  • Blumberg MS, Mannella JA, Moltz H (1987) Hypothalamic temperature and deep body temperature during copulation in the male rat. Physiol Behav 39:367–370

    PubMed  CAS  Google Scholar 

  • Bohlen JG, Held JP, Sanderson MO, Patterson RP (1984) Heart rate, rate-pressure product and oxygen uptake during four sexual activities. Arch Intern Med 144:1745–1748

    PubMed  CAS  Google Scholar 

  • Boulant JA (2000) The role of preoptic-anterior hypothalamus in thermoregulation and fever. 31, Suppl 5:S157–S161

    Google Scholar 

  • Bowyer JF, Ali S (2006) High doses of methamphetamine that cause disruption of the blood–brain barrier in limbic regions produce extensive neuronal degeneration in mouse hippocampus. Synapse 60:521–532

    PubMed  CAS  Google Scholar 

  • Brengelmann GL (1993) Specialized brain cooling in humans? FASEB J 7:1148–1153

    PubMed  CAS  Google Scholar 

  • Brown PL, Kiyatkin EA (2004) Brain hyperthermia induced by MDMA (“ecstasy”): modulation by environmental conditions. Eur J Neurosci 20:51–58

    PubMed  CAS  Google Scholar 

  • Brown PL, Kiyatkin EA (2005) Fatal intra-brain heat accumulation induced by meth-amphetamine at normothermic conditions in rats. Intern J Neuroprot Neuroregen 1:86–90

    CAS  Google Scholar 

  • Brown PL, Wise RA, Kiyatkin EA (2003) Brain hyperthermia is induced by methamphetamine and exacerbated by social interaction. J Neurosci 23:3924–3929

    PubMed  CAS  Google Scholar 

  • Burgoon PW, Boulant JA (2001) Temperature-sensitive properties of rat suprachiasmatic nucleus neurons. Am J Physiol 281:R706–R715

    CAS  Google Scholar 

  • Busto R, Dietrich WD, Globus MYT, Valdes I, Scheinberg R, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738

    PubMed  CAS  Google Scholar 

  • Cabanac M (1993) Selective brain cooling in humans: “fancy” or fact? FASEB J 7:1143–1147

    PubMed  CAS  Google Scholar 

  • Cadet JL, Thiriet N, Jayanthi S (2001) Involvement of free radicals in MDMA-induced neurotoxicity in mice. Ann Med Intern 152(Suppl. 3):IS57–IS59

    Google Scholar 

  • Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why? Mayo Clin Proc 78:603–612

    PubMed  Google Scholar 

  • Cheuvront SN, Haymes EM (2001) Thermoregulation and marathon running: biological and environmental influences. Sports Med 31:743–762

    PubMed  CAS  Google Scholar 

  • Crane P, Braun L, Cornford E, Cremer J, Glass J, Oldendorf M (1978) Dose-dependent reduction of glucose utilization by pentobarbital in rat brain. Stroke 9:12–18

    PubMed  CAS  Google Scholar 

  • Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 36:1–22

    PubMed  CAS  Google Scholar 

  • Davis WM, Hatoum HT, Walters IW (1987) Toxicity of MDA (2,4-methylenedioxyamphetamine) considered for relevance to hazards of MDMA (ecstasy) abuse. Alcohol Drug Res 7:123–134

    PubMed  CAS  Google Scholar 

  • Delgado JMR, Hanai T (1966) Intracerebral temperatures in free-moving cats. Am J Physiol 211:755–769

    PubMed  CAS  Google Scholar 

  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–294

    PubMed  CAS  Google Scholar 

  • Ecstasy and amphetamines. Global survey 2003. United Nations Publication, New York

  • Erikson K, Lanier W (2003) Anesthetic technique influences brain temperature, independently of core temperature, during craniotomy in cats. Anesth Analg 96:1460–1466

    Google Scholar 

  • Feitelberg S, Lampl H (1935) Warmetonung der Grosshirnrinde bei Erregung und Ruhe. Functionshemmung Arch exp Path Pharmak 177:726–736

    Google Scholar 

  • Fox RT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci 83:1140–1144

    PubMed  CAS  Google Scholar 

  • Gerasimov V (1998) Information processing in human body. http://vadim.www.media.mit.edu/MAS862/Project.html

  • Goldfarg AN (1970) Energy cost of sexual activity. Arch Intern Med 126:526

    Google Scholar 

  • Gordon CJ, Heath JE (1986) Integration and central processing in temperature regulation. Ann Rev Physiol 48:595–612

    CAS  Google Scholar 

  • Gordon CJ, Watkinson WO, O’Callaghan JP, Miller DB (1991) Effects of 3,4-methylenedioxymethamphetamine on autonomic thermoregulatory responses of the rat. Pharmacol Biochem Behav 38:339–344

    PubMed  CAS  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    PubMed  CAS  Google Scholar 

  • Guatteo E, Chung KK, Bowala TK, Bernardi G, Mercuri ND, Lipski J (2005) Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential; channels. J Neurophysiol 94:3069–3080

    PubMed  CAS  Google Scholar 

  • Hayward JN, Baker MA (1968) Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am J Physiol 215:389–403

    PubMed  CAS  Google Scholar 

  • Hodgkin AL (1967) The conduction of the nervous impulse. Liverpool University Press, Liverpool

    Google Scholar 

  • Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S (1999) Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J Neurosci 19:10417–10427

    PubMed  CAS  Google Scholar 

  • Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414

    PubMed  CAS  Google Scholar 

  • Ide K, Schmalbruch IK, Quistorff B, Horn A, Secher NH (2000) Lactate, glucose, and oxygen uptake in human brain during recovery from maximal exercise. J Physiol 522:159–164

    PubMed  CAS  Google Scholar 

  • Iwagami Y (1996) Changes in ultrastructure of human cell related to certain biological responses under hyperthermic culture condition. Human Cell 9:353–366

    PubMed  CAS  Google Scholar 

  • James W (1892) Psychology. Briefer course. Henry Holt, New York

  • Kalant H (2001) The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Can Med Assoc J 165:917–928

    CAS  Google Scholar 

  • Katz B, Miledi R (1965) The effect of temperature on the synaptic delay at the neuromuscular junction. J Physiol 181:656–670

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA (1988) Functional properties of presumed dopamine-containing and other ventral tegmental area neurons in conscious rats. Intern J Neurosci 42:21–43

    Google Scholar 

  • Kiyatkin EA (2005) Brain hyperthermia as physiological and pathological phenomena. Brain Res Rev 50:27–56

    PubMed  Google Scholar 

  • Kiyatkin EA, Brown PL (2005) Brain and body temperature homeostasis during sodium pentobarbital anesthesia with and without body warming in rats. Physiol Behav 84:563–570

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Mitchum R (2003) Fluctuations in brain temperatures during sexual behavior in male rats: an approach for evaluating neural activity underlying motivated behavior. Neuroscience 119:1169–1183

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Stein EA (1993) Behavior-associated changes in blood pressure during heroin self-administration. Pharmacol Biochem Behav 46:561–567

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL, Wise RA (2002) Brain temperature fluctuation: a reflection of functional neural activation. Eur J Neurosci 16:164–168

    PubMed  Google Scholar 

  • Kovalzon VM (1972) Brain temperature variations during natural sleep and arousal in white rats. Physiol Behav 10:667–670

    Google Scholar 

  • Kuhn DM, Geddes TJ (2000) Molecular footprints of neurotoxic amphetamine action. Ann NY Acad Sci 914:92–103

    Article  PubMed  CAS  Google Scholar 

  • Laughlin SB, de Ruyter van Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nature Neurosci 1:36–41

    PubMed  CAS  Google Scholar 

  • Lee JCF, Callaway JC, Foehring RC (2005) The effects of temperature on calcium transients and Ca2+-dependent afterhyperpolarizations in neocortical pyramidal neurons. J Physiol 93:2012–2020

    CAS  Google Scholar 

  • Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia 19:252–266

    PubMed  CAS  Google Scholar 

  • Lepock JR, Cheng K-H, Al-Qysi H, Kruuv J (1983) Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochem Cell Biol 61:421–427

    Article  PubMed  CAS  Google Scholar 

  • Lin PS, Quamo S, Ho KC, Gladding J (1991) Hyperthermia enhances the cytotoxic effects of reactive oxygen species to Chinese hamster cells and bovine endothelial cells in vitro. Radiat Med 126:43–51

    CAS  Google Scholar 

  • Lucas JH, Emery DG, Wang G, Rosenberg-Schaffer LJ, Jordan RS, Gross GW (1994) In vitro investigation of the effect of nonfreezing low temperatures on leasoned and uninjured mammalian spinal neurons. J Neurotrauma 11:35–61

    PubMed  CAS  Google Scholar 

  • Lyson T, Jadeszko M, Mariak Z, Kochanowicz J, Lewko J (2006) Intracerebrain temperature measurements in brain death. Neurol Neurosurg Pol 40:269–275

    Google Scholar 

  • Maier CM, Steinberg GK (2003) Hypothermia and cerebral ischemia. Humana Press, New York

    Google Scholar 

  • Margaria R, Cretelli P, Aghemo P, Sassi G (1963) Energy cost of running. J Appl Physiol 18:367–370

    PubMed  CAS  Google Scholar 

  • Mariak Z, Lewko J, Luczaj J, Polocki B, White MD (1994) The relationship between directly measured human cerebral and tympanic temperatures during changes in brain temperature. Eur J Appl Physiol Occup Physiol 69:545–549

    PubMed  CAS  Google Scholar 

  • Mariak Z, Jadeszko M, Lewko J, Lebkowski W, Lyson T (1998) No specific brain protection against thermal stress in fever. Acta Neurochir (Wien) 140:585–590

    CAS  Google Scholar 

  • Mariak Z, Lebkowski W, Lyson T, Lewko J, Piekarski P (1999) Brain temperature during craniotomy in general anesthesia. Neurol Neurochir Pol 33:1325–1327

    PubMed  CAS  Google Scholar 

  • Mariak Z, Lyson T, Peikarski P, Lewko J, Jadeszko M, Szydlik P (2000) Brain temperature in patients with central nervous system lesions. Neurol Neurosurg Pol 34:509–522

    CAS  Google Scholar 

  • Masters WH, Johnson VE (1966) Human sexual response. Little, Brown and Co., Boston

    Google Scholar 

  • McElligott JC, Melzack R (1967) Localized thermal changes evoked in the brain by visual and auditory stimulation. Exp Neurol 17:293–312

    PubMed  CAS  Google Scholar 

  • Mcilvoy L (2004) Comparison of brain temperature to core temperature: a review of the literature. J Neurosci Nurs 36:23–31

    PubMed  Google Scholar 

  • Mechan AO, O’Shea E, Elliot JM, Colado MI, Green AR (2001) A neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) to rats results in a long-term deficit in thermoregulation. Psychopharmacology 155:413–418

    PubMed  CAS  Google Scholar 

  • Mekjavic IB, Eiken O (2005) Contribution of thermal and nonthermal factors to the regulation of body temperature in mammals. J Appl Physiol 100:2065–2072

    Google Scholar 

  • Mellergard P, Nordstrom CH (1990) Epidural temperatures and possible intracerebral temperature gradients in man. Br J Neurosurg 4:31–38

    PubMed  CAS  Google Scholar 

  • Michenfelder J (1988) Anesthesia and the brain: clinical, functional and vascular correlates. Churchill Livingstone, New York

    Google Scholar 

  • Mitchum R, Kiyatkin EA (2004) Brain hyperthermia and temperature fluctuations during sexual interaction in female rats. Brain Res 1000:110–122

    PubMed  CAS  Google Scholar 

  • Miyazawa T, Tamara A, Fukui S, Hossmann KA (2003) Effects of mild hypothermia on focal cerebral ischemia: review of experimental studies. Neurol Res 25:457–464

    PubMed  Google Scholar 

  • Moriyama E (1990) Cerebral blood flow changes during localized hyperthermia. Neurol Med Chir (Tokio) 30:923–929

    CAS  Google Scholar 

  • Moser E, Mathiesen L (1996) Relationships between neuronal activity and brain temperature in rats. Neuroreport 78:1876–1880

    Google Scholar 

  • Moser E, Mathiesen I, Andersen P (1993) Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259:1324–1326

    PubMed  CAS  Google Scholar 

  • Nadel E (2003) Regulation of body temperature. In: Boron WF, Boulpaep EL (eds) Medical physiology. Saunders, Philadelphia, pp 1231–1241

  • Nagata Y, Katayama K, Manivel CJ, Song CW (2000) Changes in blood flow in locally heated intestine of rats. Int J Hyperthermia 16:159–170

    PubMed  CAS  Google Scholar 

  • Nakajima T, Rhee JG, Song CW, Onoyama Y (1992) Effect of a second heating on rat liver blood flow. Int J Hyperthermia 8:679–687

    PubMed  CAS  Google Scholar 

  • Nakashima K, Todd MM (1996) Effects of hypothermia on the rate of excitatory amino acid release after ischemic depolarization. Stroke 27:913–918

    PubMed  CAS  Google Scholar 

  • Nybo L, Secher NH, B. Nielson B (2002) Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J Physiol 545:697–704

    PubMed  CAS  Google Scholar 

  • Olsen TS, Weber UJ, Kammersgaard LP (2003) Therapeutic hypothermia for acute stroke. Lancet Neurol 2:410–416

    PubMed  Google Scholar 

  • Oobu K (1993) Experimental studies on the effect of heating on blood flow in the tongue of golden hamsters Fukuoka Igaku Zasshi 84:497–511

    PubMed  CAS  Google Scholar 

  • Pederson NP, Blessing WW (2001) Cutaneous vasoconstriction contributes to hyperthermia induced by 3,4-methylenedioxymethamphetamine (ecstasy) on conscious rabbits. J Neurosci 21:8648–8654

    Google Scholar 

  • Raichle ME (2003) Functional brain imaging and human brain functions J Neurosci 23:3959–3962

    PubMed  CAS  Google Scholar 

  • Ritchie JM (1973) Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog Biophys Mol Biol 26:147–187

    PubMed  CAS  Google Scholar 

  • Romanovsky AA, Ivanov AI, Shimansky YP (2002) Ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92:2667–2679

    PubMed  Google Scholar 

  • Rosomoff HL (1957) Hypothermia and cerebral varcular lesions. II. Experimental interruption followed by induction of hypothermia. Arch Neurol Psych 78:454–464

    CAS  Google Scholar 

  • Rowell LB (1983) Cardiovascular aspects of human thermoregulation. Circ Res 52:367–376

    PubMed  CAS  Google Scholar 

  • Ruby NF, Heller HC (1996) Temperature sensitivity of the suprachiasmatic nucleus of ground squirrels and rats in vitro. J Biol Rhythms 11:126–136

    PubMed  CAS  Google Scholar 

  • Rumana CS, Gopinath SP, Uzura M, Valadka AB, Robertson CS (1998) Brain temperatures exceeds systemic temperatures in head-injured patients. Clin Care Med 26:562–567

    Article  CAS  Google Scholar 

  • Ryan KL, Taylor WF, Bishop VS (1997) Arterial baroreflex modulation of heat-induced vasodilation in the rabbit ear. J Appl Physiol 83:2091–2097

    PubMed  CAS  Google Scholar 

  • Sandoval V, Hanson GR, Fleckenstein AE (2000) Methamphetamine decreases mouse striatal dopamine transporter activity: roles of hyperthermia and dopamine. Eur J Pharmacol 409:265–271

    PubMed  CAS  Google Scholar 

  • Satinoff E (1978) Neural organization and evolution of thermal regulation in mammals. Schence 201:16–22

    CAS  Google Scholar 

  • Schaefer CF (1979) Possible teratogenic hyperthermia and marathon running. JAMA 241:1892

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology. Adaptation and environment, 5th edn, Cambridge University Press, Cambridge

    Google Scholar 

  • Serota HM (1939) Temperature changes in the cortex and hypothalamus during sleep. J Neurophysiol 2:42–47

    Google Scholar 

  • Serota HM, Gerard RW (1938) Localized thermal changes in cat’s brain. J Neurophysiol 1:115–124

    CAS  Google Scholar 

  • Sessler D (2000) Perioperative heat balance. Anesthesiology 92:578–596

    PubMed  CAS  Google Scholar 

  • Siesjo B (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  • Sharma HS (2006) Hyperthermia-induced brain aedema: current status and future perspectives. Indian J Med Res 123:629–652

    PubMed  Google Scholar 

  • Sharma HS, Ali SF (2006) Alterations in blood–brain barrier function by morphine and methamphetamine. Ann NY Acad Sci 1074:198–224

    PubMed  CAS  Google Scholar 

  • Sharma HS, Hoopes PJ (2003) Hyperthermia-induced pathophysiology of the central nervous system. Int J Hyperthermia 19:325–354

    PubMed  CAS  Google Scholar 

  • Sharma HS, Alm P, Westman J (1998) Nitric oxide and carbon monoxide in the pathophysiology of brain functions in heat stress. Prog Brain Res 115:297–333

    Article  PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 27:489–495

    PubMed  CAS  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24:321–329

    PubMed  CAS  Google Scholar 

  • Suehiro E, Fujisawa H, Ito H, Ishikawa T, Maekawa T (1999) Brain temperature modifies glutamate neurotoxicity in vivo. J Neurotrauma 16:285–297

    Article  PubMed  CAS  Google Scholar 

  • Sukstanskii AL, Yablonskiy DA (2006) Theoretical model of temperature regulation in the brain during changes in functional activity. Proc Natl Acad Sci 103:12144–12149

    PubMed  CAS  Google Scholar 

  • Swan H (1974) Thermoregulation and bioenergetics. Elsevier, New York

    Google Scholar 

  • Thompson SM, Musakawa LM, Rince DA (1985) Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J Neurosci 5:817–824

    PubMed  CAS  Google Scholar 

  • Travis KA, Bockholt HJ, Zardetto-Smith AM, Johnson AK (1995) In vitro thermorensitivity of the midline thalamus. Brain Res 686:17–22

    PubMed  CAS  Google Scholar 

  • Trubel HKF, Sacolick LI, Hyder F (2006) Regional temperature changes in the brain during somatosensory stimulation, J Cereb Blood Flow Metab 26:68–78

    PubMed  Google Scholar 

  • Tryba AK, Ramirez J-M (2004) Hyperthermia modulates respiratory pacemaker bursting properties. J Neurophysiol 92:2844–2852

    PubMed  Google Scholar 

  • Uda M, Tanaka Y (1990) Arterial blood flow changes after hyperthermia on normal liver, normal brain, and normal small intestine. Gan No Rinsho 36:2362–2366

    PubMed  CAS  Google Scholar 

  • Vizi ES (1998) Different temperature dependence of carrier-mediated (cytoplasmic) and stimulus-evoked (exocytotic) release of transmitter: a simple method to separate the two types of release. Neurochem Int 33:359–356

    PubMed  CAS  Google Scholar 

  • Volgushev M, Vidyasagar TR, Chistiakova M, Eysel UT (2000) Synaptic transmission in the neocortex during reversible cooling. Neuroscience 98:9–22

    PubMed  CAS  Google Scholar 

  • Wass C, Cable D, Schaff H, Lanier W (1998) Anesthetic technique influences brain temperature during cardiopulmonary bypass in dogs. Ann Thorac Surg 65:454–460

    PubMed  CAS  Google Scholar 

  • Willis WT, Jackman MR, Bizeau ME, Pagliassotti MJ, Hazel JR (2000) Hyperthermia impairs liver mitochondrial functions. Am J Physiol 278:R1240–R1246

    CAS  Google Scholar 

  • Xie T, McGann UD, Kim S, Yuan J, Ricaurte GA (2000) Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity. J Neurosci 20:7838–7845

    PubMed  CAS  Google Scholar 

  • Yablonskiy DA, Ackerman JH, Raichle ME (2000) Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proc Natl Acad Aci 97:7603–7608

    CAS  Google Scholar 

  • Zhu M, Nehra D, Ackerman J, Yablonskiy DA (2004) On the role of anesthesia on the body/brain temperature differential in rats. J Thermal Biol 29:599–603

    Google Scholar 

Download references

Acknowledgments

I would like to thank Paul Leon Brown and David Bae for valuable comments regarding this manuscript. This research was supported by the Intramural Research Program of the NIH, NIDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Kiyatkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiyatkin, E.A. Brain temperature fluctuations during physiological and pathological conditions. Eur J Appl Physiol 101, 3–17 (2007). https://doi.org/10.1007/s00421-007-0450-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0450-7

Keywords

Navigation