Skip to main content
Log in

Defining the line between hydromyelia and syringomyelia. A differentiation is possible based on electrophysiological and magnetic resonance imaging studies

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Purpose

With the frequent use of magnetic resonance imaging (MRI), patients with subtle and diffuse symptoms due to small syrinx cavities increasingly present to neurosurgical care. In this respect, a dilated central canal, hydromyelia, must be separated from patients with true syringomyelia with an underlying disorder, as they do not share clinical and radiological features. We hypothesize that a differentiation of these two entities with distinct diagnostic tools is possible.

Methods

To describe the entity of hydromyelia, we excluded all patients from the syringomyelia database (n = 142) with any obvious cause of a syringomyelia, any objective neurological deficits on clinical examination, pathological results on electrophysiological monitoring (SSEP, MEP, silent periods) or a widening of the spinal cord cavity of more than 6 mm on MRI [routine acquisitions with FLAIR, T1/T2-weighted images, Cine and CISS (constructive interference in steady-state) studies]. Life quality was assessed through SF-36 questionnaires and an individualized questionnaire for the clinical history, pain and alternative therapies.

Results

Forty patients (15 males/25 females) matched the criteria of a hydromyelia. With a mean age of 36.7 years (range 11–62), they almost all presented with pain (79%) or dysaesthesia of the limbs, with some having been an incidental finding (10%). Over a follow-up time of 36.9 months (range 6–93) there was no neurological or radiological deterioration.

Conclusions

Patients with a hydromyelia do not share clinical or radiological characteristics with patients harbouring a true syringomyelia. As hydromyelia does not represent a disease with an underlying pathology, no clinical or radiological progression has been seen. With sophisticated diagnostic tools to rule out any pathology this subset of patients can be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aboulker J (1979) Syringomyelia and intra-rachidian fluids. X. Rachidian fluid stasis. Neurochirurgie 25(Suppl 1):98–107

    PubMed  Google Scholar 

  2. Beuls E, Gelan J, Vandersteen M, Adriaensens P, Vanormelingen L, Palmers Y (1993) Microanatomy of the excised human spinal cord and the cervicomedullary junction examined with high-resolution MR imaging at 9.4 Tesla. AJNR Am J Neuroradiol 14:699–707

    CAS  PubMed  Google Scholar 

  3. Beuls EA, Vandersteen MA, Vanormelingen LM, Adriaensens PJ, Freling G, Herpers MJ, Gelan JM (1996) Deformation of the cervicomedullary junction and spinal cord in a surgically treated adult Chiari I hindbrain hernia associated with syringomyelia: a magnetic resonance microscopic and neuropathological study. Case report. J Neurosurg 85:701–708

    Article  CAS  PubMed  Google Scholar 

  4. Biyani A, el Masry WS (1994) Post-traumatic syringomyelia: a review of the literature. Paraplegia 32:723–731

    CAS  PubMed  Google Scholar 

  5. Bullinger M, Kirchberger I (1998) SF-36 Fragebogen zum Gesundheitszustand, Handanweisung. Hogrefe, Göttingen

    Google Scholar 

  6. Coleman LT, Zimmerman RA, Rorke LB (1995) Ventriculus terminalis of the conus medullaris: MR findings in children. AJNR Am J Neuroradiol 16:1421–1426

    CAS  PubMed  Google Scholar 

  7. Fairbank JC, Pynsent PB (2000) The Oswestry disability index. Spine 25:2940–2952. doi:10.1097/00007632-200011150-00017 discussion 2952

    Article  CAS  PubMed  Google Scholar 

  8. Fischbein NJ, Dillon WP, Cobbs C, Weinstein PR (1999) The “presyrinx” state: a reversible myelopathic condition that may precede syringomyelia. AJNR Am J Neuroradiol 20:7–20

    CAS  PubMed  Google Scholar 

  9. Greitz D (2006) Unraveling the riddle of syringomyelia. Neurosurg Rev 29:251–264. doi:10.1007/s10143-006-0029-5

    Article  PubMed  Google Scholar 

  10. Gusnard DA, Naidich TP, Yousefzadeh DK, Haughton VM (1986) Ultrasonic anatomy of the normal neonatal and infant spine: correlation with cryomicrotome sections and CT. Neuroradiology 28:493–511. doi:10.1007/BF00344103

    Article  CAS  PubMed  Google Scholar 

  11. Holly LT, Batzdorf U (2002) Slitlike syrinx cavities: a persistent central canal. J Neurosurg Spine 97:161–165

    Article  Google Scholar 

  12. Iskandar BJ, Hedlund GL, Grabb PA, Oakes WJ (1998) The resolution of syringohydromyelia without hindbrain herniation after posterior fossa decompression. J Neurosurg 89:212–216

    Article  CAS  PubMed  Google Scholar 

  13. Jinkins JR, Sener RN (1999) Idiopathic localized hydromyelia: dilatation of the central canal of the spinal cord of probable congenital origin. J Comput Assist Tomogr 23:351–353. doi:10.1097/00004728-199905000-00004

    Article  CAS  PubMed  Google Scholar 

  14. Kasantikul V, Netsky MG, James AE Jr (1979) Relation of age and cerebral ventricle size to central canal in man. Morphological analysis. J Neurosurg 51:85–93

    Article  CAS  PubMed  Google Scholar 

  15. Klekamp J (2002) The pathophysiology of syringomyelia—historical overview and current concept. Acta Neurochir (Wien) 144:649–664. doi:10.1007/s00701-002-0944-3

    Article  CAS  Google Scholar 

  16. Levy EI, Heiss JD, Kent MS, Riedel CJ, Oldfield EH (2000) Spinal cord swelling preceding syrinx development. Case report. J Neurosurg Spine 92:93–97

    Article  CAS  Google Scholar 

  17. Leyden E (1873) Ueber Hydromyelus und Syringomyelie. Virchows Arch A Pathol Anat Histol 68:1–26

    Google Scholar 

  18. Matsubayashi R, Uchino A, Kato A, Kudo S, Sakai S, Murata S (1998) Cystic dilatation of ventriculus terminalis in adults: MRI. Neuroradiology 40:45–47. doi:10.1007/s002340050537

    Article  CAS  PubMed  Google Scholar 

  19. Milhorat TH, Johnson RW, Milhorat RH, Capocelli AL Jr, Pevsner PH (1995) Clinicopathological correlations in syringomyelia using axial magnetic resonance imaging. Neurosurgery 37:206–213. doi:10.1097/00006123-199508000-00003

    Article  CAS  PubMed  Google Scholar 

  20. Milhorat TH, Kotzen RM, Anzil AP (1994) Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 80:716–722

    Article  CAS  PubMed  Google Scholar 

  21. Nelson MD Jr, Sedler JA, Gilles FH (1989) Spinal cord central echo complex: histoanatomic correlation. Radiology 170:479–481

    PubMed  Google Scholar 

  22. Netsky M (1953) Syringomyelia. A clinicopathologic study. Arch Neurol Psychiatry 70:741–777

    CAS  Google Scholar 

  23. Oldfield EH (2001) Syringomyelia. J Neurosurg Spine 95:153–155

    Article  CAS  Google Scholar 

  24. Ollivier d’Angers C (1824) Traité de la moelle epinaré et de ses maladies. Chez Crevot, Paris

    Google Scholar 

  25. Parent A (1996) Carpenter’s human neuroanatomy. Williams & Wilkins, Baltimore

    Google Scholar 

  26. Petit-Lacour MC, Lasjaunias P, Iffenecker C, Benoudiba F, Hadj RM, Hurth M, Doyon D (2000) Visibility of the central canal on MRI. Neuroradiology 42:756–761. doi:10.1007/s002340000373

    Article  CAS  PubMed  Google Scholar 

  27. Rao VR, Joseph S, Mandalam KR, Jain SK, Gupta AK, Unni NM, Rao AS, Mohan PK (1991) Syringohydromyelia: radiological evaluation of 82 patients in a developing country. Clin Radiol 44:165–171. doi:10.1016/S0009-9260(05)80861-X

    Article  CAS  PubMed  Google Scholar 

  28. Roser F, Ebner FH, Danz S, Riether F, Ritz R, Dietz K, Naegele T, Tatagiba M (2008) 3D-constructive interference in steady-state (CISS) Magnetic resonance imaging in Syringomyelia: advantages to conventional imaging. J Neurosurg 8:429–435

    Google Scholar 

  29. Roser F, Ebner FH, Liebsch M, Dietz K, Tatagiba M (2008) A new concept in the electrophysiological evaluation of syringomyelia. J Neurosurg 8:256–260

    Google Scholar 

  30. Sigal R, Denys A, Halimi P, Shapeero L, Doyon D, Boudghene F (1991) Ventriculus terminalis of the conus medullaris: MR imaging in four patients with congenital dilatation. AJNR Am J Neuroradiol 12:733–737

    CAS  PubMed  Google Scholar 

  31. Sixt C, Riether F, Will B, Tatagiba M, Roser F (2009) Evaluation of quality of life parameters in Syringomyelia patients. J Clin Neurosci (in press)

  32. Stilling B (1859) Neue Untersuchungen über den Bau des Rückenmarks. Hotop Kassel

  33. Takamura Y, Kawasaki T, Takahashi A, Nunomura K, Tiba K, Hasunuma M, Itou T (2001) A craniocervical injury-induced syringomyelia caused by central canal dilation secondary to acquired tonsillar herniation. Case report. J Neurosurg Spine 95:122–127

    Article  CAS  Google Scholar 

  34. Vernon H (2008) The Neck Disability Index: state-of-the-art, 1991–2008. J Manipulative Physiol Ther 31:491–502. doi:10.1016/j.jmpt.2008.08.006

    Article  PubMed  Google Scholar 

  35. Wang D, Bodley R, Sett P, Gardner B, Frankel H (1996) A clinical magnetic resonance imaging study of the traumatised spinal cord more than 20 years following injury. Paraplegia 34:65–81

    CAS  PubMed  Google Scholar 

  36. Williams B, Sgouros S, Nenji E (1995) Cerebrospinal fluid drainage for syringomyelia. Eur J Pediatr Surg 5(Suppl 1):27–30. doi:10.1055/s-2008-1066259

    Article  PubMed  Google Scholar 

  37. Yasui K, Hashizume Y, Yoshida M, Kameyama T, Sobue G (1999) Age-related morphologic changes of the central canal of the human spinal cord. Acta Neuropathol 97:253–259. doi:10.1007/s004010050982

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Roser.

Additional information

Comment

Roser and co-workers have approached a difficult and controversial subject: hydromyelia. If all cavities in the spinal cord can be named syrinxes, it seems often difficult to be sure that we are truly dealing with a dilated central canal. If thin syrinxes can be a central canal residue or perhaps a dilated central canal (hydromyelia), they can also be an intraparenchymal cavity located truly inside the spinal cord parenchyma. On the other hand, large syrinxes with prominent related signs could also be dilated central canal or a combination of central canal and intraparenchymal cavities. Using different terminologies outside a physiopatholgical discussion can be confusing and misleading. In most cases of possible or even probable hydromyelia we remain, nonetheless, uncertain. Besides, some of these slit-syrinxes that are possibly hydromyelia, instead of being really asymptomatic could be related to a very progressive atrophic process, becoming more evident clinically and radiologically on a longer follow-up.

C. Raftopoulos

Belgium

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roser, F., Ebner, F.H., Sixt, C. et al. Defining the line between hydromyelia and syringomyelia. A differentiation is possible based on electrophysiological and magnetic resonance imaging studies. Acta Neurochir 152, 213–219 (2010). https://doi.org/10.1007/s00701-009-0427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-009-0427-x

Keywords

Navigation