Skip to main content

Advertisement

Log in

A Review of the Automated Detection of Change in Serial Imaging Studies of the Brain

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Serial imaging is frequently performed on patients with diseases of the brain, to track and observe changes. Magnetic resonance imaging provides very detailed and rich information, and is therefore used frequently for this application. The data provided by MR can be so plentiful; however, that it obfuscates the information the radiologist seeks. A system which could reduce the large quantity of primitive data to a smaller and more informative subset of data, emphasizing change, would be useful. This article discusses motivating factors for the production of an automated process to this effect, and reviews the approaches of previous authors. The discussion is focused on brain tumors and multiple sclerosis, but many of the ideas are applicable to other disease processes, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. PA Filipek DN Kennedy VS Caviness (1991) ArticleTitleVolumetric analyses of central nervous system neoplasm based on MRI Pediatr Neurol 7 347–351 Occurrence Handle10.1016/0887-8994(91)90064-R Occurrence Handle1:STN:280:By2C3cbot1Q%3D Occurrence Handle1764136

    Article  CAS  PubMed  Google Scholar 

  2. JV Hajnal N Saeed A Oatridge et al. (1995) ArticleTitleDetection of subtle brain changes using subvoxel registration and subtraction of serial MR images J Comput Assist Tomogr 19 677–691 Occurrence Handle1:STN:280:BymD38vnslA%3D Occurrence Handle7560311

    CAS  PubMed  Google Scholar 

  3. JV Hajnal N Saeed EJ Soar et al. (1995) ArticleTitleA registration and interpolation procedure for subvoxel matching of serially acquired MR images J Comput Assist Tomogr 19 289–296 Occurrence Handle1:STN:280:ByqC1Mjns1I%3D Occurrence Handle7890857

    CAS  PubMed  Google Scholar 

  4. PA Freeborough RP Woods NC Fox (1996) ArticleTitleAccurate registration of serial 3D MR brain images and its application to visualizing change in neurodegenerative disorders J Comput Assist Tomogr 20 1012–1022 Occurrence Handle10.1097/00004728-199611000-00030 Occurrence Handle1:STN:280:ByiD1cjoslc%3D Occurrence Handle8933812

    Article  CAS  PubMed  Google Scholar 

  5. H Rusinek MJ Leon Particlede AE George et al. (1991) ArticleTitleAlzheimer disease: measuring loss of cerebral gray matter with MR imaging Radiology 178 109–114 Occurrence Handle1:STN:280:By6D2svps1U%3D Occurrence Handle1984287

    CAS  PubMed  Google Scholar 

  6. M Bosc F Heitz JP Armspach et al. (2003) ArticleTitleAutomatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution Neuroimage 20 643–656 Occurrence Handle10.1016/S1053-8119(03)00406-3 Occurrence Handle14568441

    Article  PubMed  Google Scholar 

  7. Ettinger GJ, Grimson WE, Lozano–Perez T, et al.: Automatic registration for multiple sclerosis change detection. IEEE Workshop on Biomedical Image Analysis, Seattle, WA, 1994

  8. AB Miller B Hoogstraten M Staquet et al. (1981) ArticleTitleReporting results of cancer treatment Cancer 47 207–214 Occurrence Handle1:STN:280:Bi6C3M7ns1E%3D Occurrence Handle7459811

    CAS  PubMed  Google Scholar 

  9. S Green G Weiss (1992) ArticleTitleSouthwest oncology group standard response criteria, endpoint definitions and toxicity criteria Invest New Drugs 10 239–253 Occurrence Handle1:STN:280:ByyC3sfptVU%3D Occurrence Handle1487397

    CAS  PubMed  Google Scholar 

  10. AR Padhani L Ollivier (2001) ArticleTitleThe RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists Br J Radiol 74 983–986 Occurrence Handle1:STN:280:DC%2BD3MnmtlKhtw%3D%3D Occurrence Handle11709461

    CAS  PubMed  Google Scholar 

  11. EA Gehan MC Tefft (2000) ArticleTitleWill there be resistance to the RECIST (Response Evaluation Criteria in Solid Tumors)? J Natl Cancer Inst 92 179–181 Occurrence Handle10.1093/jnci/92.3.179 Occurrence Handle1:STN:280:DC%2BD3c7it1GjsA%3D%3D Occurrence Handle10655425

    Article  CAS  PubMed  Google Scholar 

  12. P Therasse SG Arbuck EA Eisenhauer et al. (2000) ArticleTitleNew guidelines to evaluate the response to treatment in solid tumors J Natl Cancer Inst 92 205–216 Occurrence Handle10.1093/jnci/92.3.205 Occurrence Handle1:STN:280:DC%2BD3c7it1Gitg%3D%3D Occurrence Handle10655437

    Article  CAS  PubMed  Google Scholar 

  13. Y Tsuchida P Therasse (2001) ArticleTitleResponse evaluation criteria in solid tumors (RECIST): new guidelines Med Pediatr Oncol 37 1–3 Occurrence Handle10.1002/mpo.1154 Occurrence Handle1:STN:280:DC%2BD3MvhsFCjug%3D%3D Occurrence Handle11466715

    Article  CAS  PubMed  Google Scholar 

  14. AR Padhani JE Husband (2000) ArticleTitleAre current tumour response criteria relevant for the 21st century? Br J Radiol 73 1031–1033 Occurrence Handle1:STN:280:DC%2BD3M7ntFGksg%3D%3D Occurrence Handle11271893

    CAS  PubMed  Google Scholar 

  15. P Thiesse L Ollivier D Di Stefano–Louineau et al. (1997) ArticleTitleResponse rate accuracy in oncology trials: reasons for interobserver variability J Clin Oncol 15 3507–3514 Occurrence Handle1:STN:280:DyaK1c%2FlslSktQ%3D%3D Occurrence Handle9396404

    CAS  PubMed  Google Scholar 

  16. LP Clarke RP Velthuizen M Clark et al. (1998) ArticleTitleMRI measurement of brain tumor response: comparison of visual metric and automatic segmentation Magn Reson Imaging 16 271–279 Occurrence Handle10.1016/S0730-725X(97)00302-0 Occurrence Handle1:STN:280:DyaK1c3otlartQ%3D%3D Occurrence Handle9621968

    Article  CAS  PubMed  Google Scholar 

  17. KL Chow YP Gobin T Cloughesy et al. (2000) ArticleTitlePrognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma treated with selective intra-arterial chemotherapy Am J Neuroradiol 21 471–478 Occurrence Handle1:STN:280:DC%2BD3c7pt1yrsg%3D%3D Occurrence Handle10730637

    CAS  PubMed  Google Scholar 

  18. HL Weiner CR Guttmann SJ Khoury et al. (2000) ArticleTitleSerial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage J Neuroimmunol 104 164–173 Occurrence Handle10.1016/S0165-5728(99)00273-8 Occurrence Handle1:CAS:528:DC%2BD3cXhsFOhtbY%3D Occurrence Handle10713356

    Article  CAS  PubMed  Google Scholar 

  19. CR Jack RC Petersen Y Xu et al. (1998) ArticleTitleRate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease Neurology 51 993–999 Occurrence Handle9781519

    PubMed  Google Scholar 

  20. G Eaves (1973) ArticleTitleThe invasive growth of malignant tumours as a purely mechanical process J Pathol 109 233–237 Occurrence Handle1:STN:280:CSyB383ksFE%3D Occurrence Handle4719774

    CAS  PubMed  Google Scholar 

  21. A Kowalczuk RL Macdonald C Amidei et al. (1997) ArticleTitleQuantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas Neurosurgery 41 1028–1036 Occurrence Handle1:STN:280:DyaK1c%2Fis12isg%3D%3D Occurrence Handle9361056

    CAS  PubMed  Google Scholar 

  22. MA Hammoud R Sawaya W Shi et al. (1996) ArticleTitlePrognostic significance of preoperative MRI scans in glioblastoma multiforme J Neurooncol 27 65–73 Occurrence Handle1:STN:280:BymB3svnsF0%3D Occurrence Handle8699228

    CAS  PubMed  Google Scholar 

  23. PJ Kelly C Daumas–Duport DB Kispert et al. (1987) ArticleTitleImaging-based stereotaxic serial biopsies in untreated intracranial glial neoplams J Neurosurg 66 865–874 Occurrence Handle1:STN:280:BiiC1MjlvFE%3D Occurrence Handle3033172

    CAS  PubMed  Google Scholar 

  24. PJ Kelly C Daumas–Duport BW Scheithauer et al. (1987) ArticleTitleStereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defmed abnormalities in patients with glial neoplasms Mayo Clin Proc 62 450–459 Occurrence Handle1:STN:280:BiiB3c%2Fis1I%3D Occurrence Handle3553757

    CAS  PubMed  Google Scholar 

  25. PC Burger ER Heinz T Shibata et al. (1988) ArticleTitleTopographic anatomy and CT correlations in the untreated glioblastoma multiforme J Neurosurg 68 698–704 Occurrence Handle1:STN:280:BieC1cjnvFM%3D Occurrence Handle2833587

    CAS  PubMed  Google Scholar 

  26. PC Johnson BP Drayer D Rigamonti et al. (1987) ArticleTitleDefining the extent of infiltrating glioblastoma multiforme (GBM): A comparison of postmortem magnetic resonance imaging (MRI) with histopathology J Neuropathol Exp Neurol 46 389

    Google Scholar 

  27. M Tovi M Hartman A Lilja et al. (1994) ArticleTitleMR imaging in cerebral gliomas. Tissue component analysis in correlation with histopathology of whole-brain specimens Acta Radiol 35 495–505 Occurrence Handle1:STN:280:ByuA28fmtFU%3D Occurrence Handle8086262

    CAS  PubMed  Google Scholar 

  28. M Tovi (1993) ArticleTitleMR imaging in cerebral gliomas analysis of tumour tissue components Acta Radiol Suppl 384 1–24 Occurrence Handle1:STN:280:ByyB283pvFE%3D Occurrence Handle8493882

    CAS  PubMed  Google Scholar 

  29. SM Haney PM Thompson TF Cloughesy et al. (2001) ArticleTitleMapping therapeutic response in a patient with malignant glioma J Comput Assist Tomogr 25 529–536 Occurrence Handle10.1097/00004728-200107000-00004 Occurrence Handle1:STN:280:DC%2BD3Mvis1alug%3D%3D Occurrence Handle11473181

    Article  CAS  PubMed  Google Scholar 

  30. SM Haney PM Thompson TF Cloughesy et al. (2001) ArticleTitleTracking tumor growth rates in patients with malignant gliomas: a test of two algorithms Am J Neuroradiol 22 73–82 Occurrence Handle1:STN:280:DC%2BD3M7nslymsQ%3D%3D Occurrence Handle11158891

    CAS  PubMed  Google Scholar 

  31. D Rey G Subsol H Delingette et al. (2002) ArticleTitleAutomatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis Med Image Anal 6 163–179 Occurrence Handle10.1016/S1361-8415(02)00056-7 Occurrence Handle12045002

    Article  PubMed  Google Scholar 

  32. PM Thompson JN Giedd RP Woods et al. (2000) ArticleTitleGrowth patterns in the developing brain detected by using continuum mechanical tensor maps Nature 404 190–193 Occurrence Handle10.1038/35004593 Occurrence Handle1:CAS:528:DC%2BD3cXhvFOis7o%3D Occurrence Handle10724172

    Article  CAS  PubMed  Google Scholar 

  33. PA Freeborough NC Fox (1998) ArticleTitleModeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images J Comput Assist Tomogr 22 838–843 Occurrence Handle10.1097/00004728-199809000-00031 Occurrence Handle1:STN:280:DyaK1cvis1Ogtg%3D%3D Occurrence Handle9754126

    Article  CAS  PubMed  Google Scholar 

  34. SK Kyriacou C Davatzikos SJ Zinreich et al. (1999) ArticleTitleNonlinear elastic registration of brain images with tumor pathology using a biomechanical model IEEE Trans Med Imaging 18 580–592 Occurrence Handle10.1109/42.790458 Occurrence Handle1:STN:280:DyaK1MvjtFCitQ%3D%3D Occurrence Handle10504092

    Article  CAS  PubMed  Google Scholar 

  35. JP Thirion G Calmon (1999) ArticleTitleDeformation analysis to detect and quantify active lesions in three-dimensional medical image sequences IEEE Trans Med Imaging 18 429–441 Occurrence Handle10.1109/42.774170 Occurrence Handle1:STN:280:DyaK1MzktlWqsQ%3D%3D Occurrence Handle10416804

    Article  CAS  PubMed  Google Scholar 

  36. J Thirion (1999) Elastic matching: continuum mechanical and probabalistic analysis A Toga (Eds) Brain Warping Academic Press San Diego, CA 183–197

    Google Scholar 

  37. G Gerig D Welti CRG Guttmann et al. (1998) Exploring the Discrimination Power of the Time Domain for Segmentation and Characterization of Lesions in Serial MR Data MICCAI Boston

    Google Scholar 

  38. DS Meier CR Guttmann (2003) ArticleTitleTime-series analysis of MRI intensity patterns in multiple sclerosis Neuroimage 20 1193–1209 Occurrence Handle10.1016/S1053-8119(03)00354-9 Occurrence Handle14568488

    Article  PubMed  Google Scholar 

  39. R Kikinis CR Guttmann D Metcalf et al. (1999) ArticleTitleQuantitative follow-up of patients with multiple sclerosis using MRI: technical aspects J Magn Reson Imaging 9 519–530 Occurrence Handle10.1002/(SICI)1522-2586(199904)9:4<519::AID-JMRI3>3.3.CO;2-D Occurrence Handle1:STN:280:DyaK1M3kslCluw%3D%3D Occurrence Handle10232509

    Article  CAS  PubMed  Google Scholar 

  40. CR Guttmann R Kikinis MC Anderson et al. (1999) ArticleTitleQuantitative follow-up of patients with multiple sclerosis using MRI: reproducibility J Magn Reson Imaging 9 509–518 Occurrence Handle10.1002/(SICI)1522-2586(199904)9:4<509::AID-JMRI2>3.3.CO;2-J Occurrence Handle1:STN:280:DyaK1M3kslClug%3D%3D Occurrence Handle10232508

    Article  CAS  PubMed  Google Scholar 

  41. ML Gawne–Cain S Webb P Tofts et al. (1996) ArticleTitleLesion volume measurement in multiple sclerosis: how important is accurate repositioning? J Magn Reson Imaging 6 705–713 Occurrence Handle1:STN:280:ByiD2cvptlI%3D Occurrence Handle8890007

    CAS  PubMed  Google Scholar 

  42. MN Pilipuf JC Goble NF Kassell (1995) ArticleTitleA noninvasive thermoplastic head immobilization system Technical note. J Neurosurg 82 1082–1085 Occurrence Handle1:STN:280:ByqB1c%2FhsVI%3D

    CAS  Google Scholar 

  43. V Bettinardi R Scardaoni MC Gilardi et al. (1991) ArticleTitleHead holder for PET, CT, and MR studies J Comput Assist Tomogr 15 886–892 Occurrence Handle1:STN:280:By6A2MfotVE%3D Occurrence Handle1885820

    CAS  PubMed  Google Scholar 

  44. S Carini E Calcagno P Tortori–Donati et al. (1992) ArticleTitleA new model for non-invasive, reproducible fixation of a stereotaxic frame using an orthodontic resin plate Acta Neurochir 118 159–161 Occurrence Handle1:STN:280:ByyD1cbhtFI%3D

    CAS  Google Scholar 

  45. L Laitinen (1987) ArticleTitleNoninvasive multipurpose stereoadapter Neurol Res 9 137–141 Occurrence Handle1:STN:280:BiiB1cjmt1Q%3D Occurrence Handle2886943

    CAS  PubMed  Google Scholar 

  46. V Edward C Windischberger R Cunnington et al. (2000) ArticleTitleQuantification of fMRI artifact reduction by a novel plaster cast head holder Hum Brain Mapp 11 207–213 Occurrence Handle10.1002/1097-0193(200011)11:3<207::AID-HBM60>3.0.CO;2-J Occurrence Handle1:STN:280:DC%2BD3M7ktlCrtw%3D%3D Occurrence Handle11098798

    Article  CAS  PubMed  Google Scholar 

  47. S Strother J Perlmutter (1987) ArticleTitleHeadholders for functional brain imaging J Cereb Blood Flow Metab 7 S16–S18 Occurrence Handle3549745

    PubMed  Google Scholar 

  48. K Oshio LP Panych CR Guttmann (1996) ArticleTitleA simple noninvasive stereotactic device for routine MR head examinations J Comput Assist Tomogr 20 588–591 Occurrence Handle10.1097/00004728-199607000-00016 Occurrence Handle1:STN:280:BymA3s7hslI%3D Occurrence Handle8708061

    Article  CAS  PubMed  Google Scholar 

  49. SC Strother JR Anderson XL Xu et al. (1994) ArticleTitleQuantitative comparisons of image registration techniques based on high-resolution MRI of the brain J Comput Assist Tomogr 18 954–962 Occurrence Handle1:STN:280:ByqD2M7otlY%3D Occurrence Handle7962808

    CAS  PubMed  Google Scholar 

  50. R Kikinis ME Shenton G Gerig et al. (1992) ArticleTitleRoutine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging J Magn Reson Imaging 2 619–629 Occurrence Handle1:STN:280:ByyD2sngtlA%3D Occurrence Handle1446105

    CAS  PubMed  Google Scholar 

  51. L Lemieux UC Wieshmann NF Moran et al. (1998) ArticleTitleThe detection and significance of subtle changes in mixed-signal brain lesions by serial MRI scan matching and spatial normalization Med Image Anal 2 227–242 Occurrence Handle10.1016/S1361-8415(98)80021-2 Occurrence Handle1:STN:280:DyaK1M%2FptVGrtQ%3D%3D Occurrence Handle9873901

    Article  CAS  PubMed  Google Scholar 

  52. O Friman M Borga P Lundberg et al. (2002) ArticleTitleDetection of neural activity in fMRI using maximum correlation modeling Neuroimage 15 386–395 Occurrence Handle10.1006/nimg.2001.0972 Occurrence Handle11798273

    Article  PubMed  Google Scholar 

  53. YZ Hsu HH Nagel G Rekers (1984) ArticleTitleNew likelihood test methods for change detection in image sequences Comput Vision Graphics Image Process 26 73–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley Erickson MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patriarche, J., Erickson, B. A Review of the Automated Detection of Change in Serial Imaging Studies of the Brain. J Digit Imaging 17, 158–174 (2004). https://doi.org/10.1007/s10278-004-1010-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-004-1010-x

Keywords

Navigation