Skip to main content

Advertisement

Log in

Part 1. Automated Change Detection and Characterization in Serial MR Studies of Brain-Tumor Patients

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

The goal of this study was to create an algorithm which would quantitatively compare serial magnetic resonance imaging studies of brain-tumor patients. A novel algorithm and a standard classify–subtract algorithm were constructed. The ability of both algorithms to detect and characterize changes was compared using a series of digital phantoms. The novel algorithm achieved a mean sensitivity of 0.87 (compared with 0.59 for classify–subtract) and a mean specificity of 0.98 (compared with 0.92 for classify–subtract) with regard to identification of voxels as changing or unchanging and classification of voxels into types of change. The novel algorithm achieved perfect specificity in seven of the nine experiments. The novel algorithm was additionally applied to a short series of clinical cases, where it was shown to identify visually subtle changes. Automated change detection and characterization could facilitate objective review and understanding of serial magnetic resonance imaging studies in brain-tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10
Fig 11
Fig. 12
Fig 13
Fig 14
Fig 15
Fig 16

Similar content being viewed by others

References

  1. DJ Simons DT Levin (1997) ArticleTitleChange blindness Trends Cogn Sci 1 261–267 Occurrence Handle10.1016/S1364-6613(97)01080-2

    Article  Google Scholar 

  2. RA Rensink (2002) ArticleTitleChange detection Annu Rev Psychol 53 245–277 Occurrence Handle11752486 Occurrence Handle10.1146/annurev.psych.53.100901.135125

    Article  PubMed  Google Scholar 

  3. J Patriarche B Erickson (2004) ArticleTitleA review of the automated detection of change in serial imaging studies of the brain J Digit Imaging 17 158–174 Occurrence Handle15534751 Occurrence Handle10.1007/s10278-004-1010-x

    Article  PubMed  Google Scholar 

  4. RJ Radke S Andra O Al-Kofahi B Roysam (2005) ArticleTitleImage change detection algorithms: a systematic survey IEEE Trans Image Process 14 294–307 Occurrence Handle15762326 Occurrence Handle10.1109/TIP.2004.838698

    Article  PubMed  Google Scholar 

  5. AB Miller B Hoogstraten M Staquet A Winkler (1981) ArticleTitleReporting results of cancer treatment Cancer 47 207–214 Occurrence Handle7459811 Occurrence Handle10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-6 Occurrence Handle1:STN:280:Bi6C3M7ns1E%3D

    Article  PubMed  CAS  Google Scholar 

  6. S Green G Weiss (1992) ArticleTitleSouthwest oncology group standard response criteria, endpoint definitions and toxicity criteria Invest New Drugs 10 239–253 Occurrence Handle1487397 Occurrence Handle10.1007/BF00944177 Occurrence Handle1:STN:280:ByyC3sfptVU%3D

    Article  PubMed  CAS  Google Scholar 

  7. L Ollivier AR Padhani (2001) ArticleTitleThe RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists Br J Radiol 74 983–986 Occurrence Handle11709461

    PubMed  Google Scholar 

  8. EA Gehan MC Tefft (2000) ArticleTitleWill there be resistance to the RECIST (Response Evaluation Criteria in Solid Tumors)? J Natl Cancer Inst 92 179–181 Occurrence Handle10655425 Occurrence Handle10.1093/jnci/92.3.179 Occurrence Handle1:STN:280:DC%2BD3c7it1GjsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  9. P Therasse SG Arbuck EA Eisenhauer J Wanders RS Kaplan L Rubinstein J Verweij M Glabbeke ParticleVan AT Oosterom Particlevan MC Christian SG Gwyther (2000) ArticleTitleNew guidelines to evaluate the response to treatment in solid tumors J Natl Cancer Inst 92 205–216 Occurrence Handle10655437 Occurrence Handle10.1093/jnci/92.3.205 Occurrence Handle1:STN:280:DC%2BD3c7it1Gitg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  10. Y Tsuchida P Therasse (2001) ArticleTitleResponse evaluation criteria in solid tumors (RECIST): new guidelines Med Pediatr Oncol 37 1–3 Occurrence Handle11466715 Occurrence Handle10.1002/mpo.1154 Occurrence Handle1:STN:280:DC%2BD3MvhsFCjug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  11. AR Padhani JE Husband (2000) ArticleTitleAre current tumour response criteria relevant for the 21st century? Br J Radiol 73 1031–1033 Occurrence Handle11271893 Occurrence Handle1:STN:280:DC%2BD3M7ntFGksg%3D%3D

    PubMed  CAS  Google Scholar 

  12. H Rusinek MJ Leon Particlede AE George LA Stylopoulos R Chandra G Smith T Rand M Mourino H Kowalski (1991) ArticleTitleAlzheimer disease: measuring loss of cerebral gray matter with MR imaging Radiology 178 109–114 Occurrence Handle1984287 Occurrence Handle1:STN:280:By6D2svps1U%3D

    PubMed  CAS  Google Scholar 

  13. HL Weiner CR Guttmann SJ Khoury EJ Orav MJ Hohol R Kikinis FA Jolesz (2000) ArticleTitleSerial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage J Neuroimmunol 104 164–173 Occurrence Handle10713356 Occurrence Handle10.1016/S0165-5728(99)00273-8 Occurrence Handle1:CAS:528:DC%2BD3cXhsFOhtbY%3D

    Article  PubMed  CAS  Google Scholar 

  14. CR Jack RC Petersen Y Xu PC O’Brien GE Smith RJ Ivnik EG Tangalos E Kokmen (1998) ArticleTitleRate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease Neurology 51 993–999 Occurrence Handle9781519

    PubMed  Google Scholar 

  15. D Rey G Subsol H Delingette N Ayache (2002) ArticleTitleAutomatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis Med Image Anal 6 163–179 Occurrence Handle12045002 Occurrence Handle10.1016/S1361-8415(02)00056-7

    Article  PubMed  Google Scholar 

  16. PM Thompson JN Giedd RP Woods D MacDonald AC Evans AW Toga (2000) ArticleTitleGrowth patterns in the developing brain detected by using continuum mechanical tensor maps Nature 404 190–193 Occurrence Handle10724172 Occurrence Handle10.1038/35004593 Occurrence Handle1:CAS:528:DC%2BD3cXhvFOis7o%3D

    Article  PubMed  CAS  Google Scholar 

  17. PA Freeborough NC Fox (1998) ArticleTitleModeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images J Comput Assist Tomogr 22 838–843 Occurrence Handle9754126 Occurrence Handle10.1097/00004728-199809000-00031 Occurrence Handle1:STN:280:DyaK1cvis1Ogtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  18. JP Thirion G Calmon (1999) ArticleTitleDeformation analysis to detect and quantify active lesions in three-dimensional medical image sequences IEEE Trans Med Imag 18 429–441 Occurrence Handle10.1109/42.774170 Occurrence Handle1:STN:280:DyaK1MzktlWqsQ%3D%3D

    Article  CAS  Google Scholar 

  19. Gerig G, Welti D, Guttmann CRG, Colchester ACF, Székely G (1998) Exploring the Discrimination Power of the Time Domain for Segmentation and Characterization of Lesions in Serial MR Data. MICCAI, Boston, MA, pp 469–480

  20. DS Meier CR Guttmann (2003) ArticleTitleTime-series analysis of MRI intensity patterns in multiple sclerosis Neuroimage 20 1193–1209 Occurrence Handle14568488 Occurrence Handle10.1016/S1053-8119(03)00354-9

    Article  PubMed  Google Scholar 

  21. JG Sled AP Zijdenbos AC Evans (1998) ArticleTitleA nonparametric method for automatic correction of intensity nonuniformity in MRI data IEEE Trans Med Imag 17 87–97 Occurrence Handle10.1109/42.668698 Occurrence Handle1:STN:280:DyaK1c3nvVCksA%3D%3D

    Article  CAS  Google Scholar 

  22. National Library of Medicine Bethesda, MD. http://www.itk.org

  23. Mayo Clinic (2005) Rochester, MN. http://www.mayo.edu/bir/software/Analyze/Analyze1NEW.html

  24. H Soltanian-Zadeh J Windham D Peck (1996) ArticleTitleOptimal linear transformation for MRI feature extraction IEEE Trans Med Imag 15 749–767 Occurrence Handle10.1109/42.544494 Occurrence Handle1:STN:280:DC%2BD1c%2FmtlOquw%3D%3D

    Article  CAS  Google Scholar 

  25. SH Freidberg AJ Insel (1986) Introduction to Linear Algebra with Applications Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  26. H Soltanian-Zadeh J Windham D Peck A Yagle (1992) ArticleTitleA comparative analysis of several transformations for enhancement and segmentation of magnetic resonance image scene sequences IEEE Trans Med Imag 11 302–318 Occurrence Handle10.1109/42.158934 Occurrence Handle1:STN:280:DC%2BD1c%2FmslygtA%3D%3D

    Article  CAS  Google Scholar 

  27. JB Castro Particlede TA Tasciyan JN Lee F Farzaneh SJ Riederer RJ Herfkens (1988) ArticleTitleMR subtraction angiography with a matched filter J Comput Assist Tomogr 12 355–362 Occurrence Handle3280628 Occurrence Handle10.1097/00004728-198803000-00037

    Article  PubMed  Google Scholar 

  28. DG Brown JN Lee RA Blinder HZ Wang SJ Riederer LW Nolte (1990) ArticleTitleCNR enhancement in the presence of multiple interfering processes using linear filters Magn Reson Med 14 79–96 Occurrence Handle2191179 Occurrence Handle10.1002/mrm.1910140109 Occurrence Handle1:STN:280:By%2BB2sbkvVI%3D

    Article  PubMed  CAS  Google Scholar 

  29. M Siadat H Soltanian-Zadeh (2000) ArticleTitlePartial volume estimation: an improvement for eigenimage method SPIE Med Imag 3979 646–655 Occurrence Handle10.1117/12.387726

    Article  Google Scholar 

  30. DH Laidlaw KW Fleisher AH Barr (1998) ArticleTitlePartial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms IEEE Trans Med Imag 17 74–86 Occurrence Handle10.1109/42.668696 Occurrence Handle1:STN:280:DyaK1c3nvVCksw%3D%3D

    Article  CAS  Google Scholar 

  31. H Soltanian-Zadeh J Windham A Yagle (1993) ArticleTitleOptimal transformation for correcting partial volume averaging effects in magnetic resonance imaging IEEE Trans Nucl Sci 40 1204–1212 Occurrence Handle10.1109/23.256737 Occurrence Handle1:CAS:528:DyaK3sXmsVCms7w%3D

    Article  CAS  Google Scholar 

  32. JN Lee SJ Riederer (1987) ArticleTitleThe contrast-to-noise in relaxation time, synthetic, and weighted-sum MR images Magn Reson Med 5 13–22 Occurrence Handle3657492 Occurrence Handle10.1002/mrm.1910050103 Occurrence Handle1:STN:280:BieD3Mzit1U%3D

    Article  PubMed  CAS  Google Scholar 

  33. ER McVeigh RM Henkelman MJ Bronskill (1985) ArticleTitleNoise and filtration in magnetic resonance imaging Med Phys 12 586–591 Occurrence Handle4046992 Occurrence Handle10.1118/1.595679 Occurrence Handle1:STN:280:BimD3MzotlM%3D

    Article  PubMed  CAS  Google Scholar 

  34. RB Buxton F Greensite (1991) ArticleTitleTarget-point combination of MR images Magn Reson Med 18 102–115 Occurrence Handle2062223 Occurrence Handle10.1002/mrm.1910180112 Occurrence Handle1:STN:280:By6B1cjltlM%3D

    Article  PubMed  CAS  Google Scholar 

  35. H Soltanian-Zadeh D Peck (2001) ArticleTitleFeature space analysis: Effects of MRI protocols Med Phys 28 2344–2351 Occurrence Handle11764042 Occurrence Handle10.1118/1.1414306 Occurrence Handle1:STN:280:DC%2BD38%2FjsF2lug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  36. H Soltanian-Zadeh J Windham D Peck T Mikkelsen (1998) ArticleTitleFeature space analysis of MRI Magn Reson Med 40 443–453 Occurrence Handle9727948 Occurrence Handle10.1002/mrm.1910400315 Occurrence Handle1:STN:280:DyaK1czpsV2gsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  37. J Windham MA Abd-Allah DA Reimann JW Froelich AM Haggar (1988) ArticleTitleEigenimage filtering in MR imaging J Comput Assist Tomogr 12 1–9 Occurrence Handle3335646 Occurrence Handle10.1097/00004728-198801000-00001 Occurrence Handle1:STN:280:BieD1cfgsFU%3D

    Article  PubMed  CAS  Google Scholar 

  38. AM Haggar JP Windham DA Reimann DO Hearshen JW Froelich (1989) ArticleTitleEigenimage filtering in MR imaging: An application in the abnormal chest wall Magn Reson Med 11 85–97 Occurrence Handle2747519 Occurrence Handle10.1002/mrm.1910110108 Occurrence Handle1:STN:280:BiaA3MzislI%3D

    Article  PubMed  CAS  Google Scholar 

  39. B Manly (1986) Multivariate statistical methods a primer second Chapman & Hall New York

    Google Scholar 

Download references

Acknowledgment

Julia W. Patriarche was supported by NIH # NS07494-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley James Erickson M.D., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patriarche, J.W., Erickson, B.J. Part 1. Automated Change Detection and Characterization in Serial MR Studies of Brain-Tumor Patients. J Digit Imaging 20, 203–222 (2007). https://doi.org/10.1007/s10278-006-1038-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-006-1038-1

Key words

Navigation