Skip to main content
Log in

Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Absolute quantification of cerebral blood flow, cerebral blood volume and mean transit time is desirable in the determination of tissue viability thresholds and tissue at risk in acute ischaemic stroke, as well as in cases where a global reduction in cerebral blood flow is expected, for example, in patients with dementia or depressive disorders. Absolute values are also useful when comparing sequential examinations of tissue perfusion parameters, for example, in the monitoring and follow-up of various kinds of therapy. Regardless of the method employed, a number of assumptions and approximations must be made to obtain absolute measures of perfusion. Furthermore, the different stages of data acquisition and processing are associated with various degrees of uncertainty. In this review, the problems of particular relevance to absolute quantification of cerebral perfusion parameters using dynamic susceptibility contrast magnetic resonance imaging are discussed, and possible solutions are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14: 249–265

    Article  PubMed  CAS  Google Scholar 

  2. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6: 164–174

    Article  PubMed  CAS  Google Scholar 

  3. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6: 731–744

    PubMed  CAS  Google Scholar 

  4. Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16: 309–321

    PubMed  CAS  Google Scholar 

  5. Fisel CR, Ackerman JL, Buxton RB, Garrido L, Belliveau JW, Rosen BR, Brady TJ (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17: 336–347

    Article  PubMed  CAS  Google Scholar 

  6. Gückel F, Brix G, Rempp K, Deimling M, Röther J, Georgi M (1994) Assessment of cerebral blood volume with dynamic susceptibility contrast enhanced gradient-echo imaging. J Comput Assist Tomogr 18: 344–351

    Article  PubMed  Google Scholar 

  7. Lassen NA, Henriksen O, Sejrsen P (1984) Indicator methods for measurement of organ and tissue blood flow. In: Shepherd JT, Abboud FM (eds) Handbook of physiology. American Physiology Society, Bethesda, pp 21–63

    Google Scholar 

  8. Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193: 637–641

    PubMed  CAS  Google Scholar 

  9. Wirestam R, Andersson L, Østergaard L, Bolling M, Aunola J-P, Lindgren A, Geijer B, Holtås S, Ståhlberg F (2000) Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 43: 691–700

    Article  PubMed  CAS  Google Scholar 

  10. Zierler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10: 393–407

    Google Scholar 

  11. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR (1993) Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?. Magn Reson Med 29: 553–558

    Article  PubMed  CAS  Google Scholar 

  12. Tombach B, Benner T, Reimer P, Schuierer G, Fallenberg EM, Geens V, Wels T, Sorensen AG (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 226: 880–888

    Article  PubMed  Google Scholar 

  13. Sorensen AG, Reimer P (2000) Cerebral MR perfusion imaging: principles and current applications. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  14. Simonsen CZ, Østergaard L, Vestergaard-Poulsen P, Røhl L, Bjørnerud A, Gyldensted C (1999) CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values. J Magn Reson Imaging 9: 342–347

    Article  PubMed  CAS  Google Scholar 

  15. Bjørnerud A, Johansson LO, Briley-Saebø K, Ahlström HK (2002) Assessment of T1 and T2* effects in vivo and ex vivo using iron oxide nanoparticles in steady state—dependence on blood volume and water exchange. Magn Reson Med 47: 461–471

    Article  PubMed  CAS  Google Scholar 

  16. Thilmann O, Larsson EM, Björkman-Burtscher IM, Ståhlberg F, Wirestam R (2005) Comparison of contrast agents with high molarity and with weak protein binding in cerebral perfusion imaging at 3 T. J Magn Reson Imaging 22: 597–604

    Article  PubMed  Google Scholar 

  17. Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, Schick F (2006) Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 41: 213–221

    Article  PubMed  Google Scholar 

  18. Benner T, Reimer P, Erb G, Schuierer G, Heiland S, Fischer C, Geens V, Sartor K, Forsting M (2000) Cerebral MR perfusion imaging: first clinical application of a 1 M gadolinium chelate (Gadovist 1.0) in a double-blinded randomized dose-finding study. J Magn Reson Imaging 12: 371–380

    Article  PubMed  CAS  Google Scholar 

  19. Griffiths PD, Wilkinson ID, Wels T, Hoggard N (2001) Brain MR perfusion imaging in humans. Acta Radiol 42: 555–559

    PubMed  CAS  Google Scholar 

  20. Essig M, Lodemann KP, Le-Huu M, Brüning R, Kirchin M, Reith W (2006) Intraindividual comparison of gadobenate dimeglubine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol 41: 256–263

    Article  PubMed  CAS  Google Scholar 

  21. Manka C, Träber F, Gieseke J, Schild HH, Kuhl CK (2005) Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Radiology 234: 869–877

    Article  PubMed  Google Scholar 

  22. Alger JR, Schaewe TJ, Lai TC, Frew AJ, Vespa PM, Etchepare M, Liebeskind DS, Saver JL, Kidwell SC (2009) Contrast agent dose effects in cerebral dynamic susceptibility contrast magnetic resonance perfusion imaging. J Magn Reson Imaging 29: 52–64

    Article  PubMed  Google Scholar 

  23. Levin JM, Kaufman MJ, Ross MH, Mendelson JH, Maas LC, Cohen BM, Renshaw PF (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 34: 655–663

    Article  PubMed  CAS  Google Scholar 

  24. Griffiths PD, Pandya H, Wilkinson ID, Hoggard N (2006) Sequential dynamic gadolinium magnetic resonance perfusion-weighted imaging: effects on transit time and cerebral blood volume measurements. Acta Radiol 47: 1079–1084

    Article  PubMed  CAS  Google Scholar 

  25. Marstrand JR, Rostrup E, Rosenbaum S, Garde E, Larsson HBW (2001) Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI. J Magn Reson Imaging 14: 391–400

    Article  PubMed  CAS  Google Scholar 

  26. Johansson E, Månsson S, Wirestam R, Svensson J, Petersson JS, Golman K, Ståhlberg F (2004) Cerebral perfusion assessment by bolus tracking using hyperpolarised 13C. Magn Reson Med 51: 464–472

    Article  PubMed  CAS  Google Scholar 

  27. Boxerman JL, Rosen BR, Weisskoff RM (1997) Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 7: 528–537

    Article  PubMed  CAS  Google Scholar 

  28. van Osch MJP, Vonken EPA, Wu O, Viergever MA,van der Grond J, Bakker CJG (2003) Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 50: 614–622

    Article  PubMed  Google Scholar 

  29. Knutsson L, Ståhlberg F, Wirestam R (2004) Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study. Magn Reson Imaging 22: 789–798

    Article  PubMed  Google Scholar 

  30. Heiland S, Reith W, Forsting M, Sartor K (2001) Do concentration and dosage of the contrast agent affect the signal change in perfusion-weighted magnetic resonance imaging? A computer simulation. Magn Reson Imaging 19: 813–820

    Article  PubMed  CAS  Google Scholar 

  31. Jackson A (2004) Analysis of dynamic contrast enhanced MRI. Br J Radiol 77(2): S154–S166

    Article  PubMed  Google Scholar 

  32. Perman WH, Gado MH, Larson KB, Perlmutter JS (1992) Simultaneous MR acquisition of arterial and brain signal-time curves. Magn Reson Med 28: 74–83

    Article  PubMed  CAS  Google Scholar 

  33. Simonsen CZ, Østergaard L, Smith DF, Vestergaard-Poulsen P, Gyldensted C (2000) Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking. J Magn Reson Imaging 12: 411–416

    Article  PubMed  CAS  Google Scholar 

  34. Speck O, Chang L, DeSilva NM, Ernst T (2000) Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 12: 381–387

    Article  PubMed  CAS  Google Scholar 

  35. Heiland S, Kreibich W, Reith W, Benner T, Dorfler A, Forsting M, Sartor K (1998) Comparison of echo-planar sequences for perfusion-weighted MRI: which is best?. Neuroradiology 40: 216–221

    Article  PubMed  CAS  Google Scholar 

  36. Vonken EPA, van Osch MJP, Bakker CJG, Viergever MA (1999) Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 10: 109–117

    Article  PubMed  CAS  Google Scholar 

  37. van Gelderen P, Grandin C, Petrella JR, Moonen CTW (2000) Rapid three dimensional MR imaging method for tracking a bolus of contrast agent through the brain. Radiology 216: 603–608

    PubMed  Google Scholar 

  38. Pedersen M, Klarhöfer M, Christensen S, Ouallet JC, Østergaard L, Dousset V, Moonen C (2004) Quantitative cerebral perfusion using the PRESTO acquisition scheme. J Magn Reson Imaging 20: 930–940

    Article  PubMed  Google Scholar 

  39. Newbould RD, Skare ST, Jochimsen TH, Alley MT, Moseley ME, Albers GW, Bammer R (2007) Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 58: 70–81

    Article  PubMed  Google Scholar 

  40. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34: 555–566

    Article  PubMed  CAS  Google Scholar 

  41. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31: 601–610

    Article  PubMed  CAS  Google Scholar 

  42. Kjølby BF, Østergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56: 187–197

    Article  PubMed  Google Scholar 

  43. Newman GC, Hospod FE, Patlak CS, Fain SE, Pulfer KA, Cook TD, O’Sullivan F (2006) Experimental estimates of the constants relating signal change to contrast concentration for cerebral blood volume by T2* MRI. J Cereb Blood Flow Metab 26: 760–770

    Article  PubMed  Google Scholar 

  44. Carroll TJ, Haughton VM, Rowley HA, Cordes D (2002) Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis. Am J Neuroradiol 23: 1007–1012

    PubMed  Google Scholar 

  45. Martel AL, Moody AR, Allder SJ, Delay GS, Morgan PS (2001) Extracting parametric images from dynamic contrast-enhanced MRI studies of the brain using factor analysis. Med Image Anal 5: 29–39

    Article  PubMed  CAS  Google Scholar 

  46. Martel AL, Fraser D, Delay GS, Morgan PS, Moody AR (2003) Separating arterial and venous components from 3D dynamic contrast-enhanced MRI studies using factor analysis. Magn Reson Med 49: 928–933

    Article  PubMed  Google Scholar 

  47. Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46: 1113–1122

    Article  PubMed  CAS  Google Scholar 

  48. Smith MR, Lu H, Frayne R (2003) Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents. Magn Reson Med 49: 122–128

    Article  PubMed  Google Scholar 

  49. Liu HL, Pu Y, Liu Y, Nickerson L, Andrews T, Fox PT, Gao JH (1999) Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 42: 167–172

    Article  PubMed  CAS  Google Scholar 

  50. Ellinger R, Kremser C, Schocke MFH, Kolbitsch C, Griebel J, Felber SR, Aichner FT (2000) The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 24: 942–948

    Article  PubMed  CAS  Google Scholar 

  51. Thilmann O, Larsson EM, Björkman-Burtscher IM, Ståhlberg F, Wirestam R (2004) Effects of echo time variation on perfusion assessment using dynamic susceptibility contrast MR imaging at 3 tesla. Magn Reson Imaging 22: 929–935

    Article  PubMed  CAS  Google Scholar 

  52. Calamante F, Vonken EJ, van Osch MJ (2007) Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 58: 544–553

    Article  PubMed  Google Scholar 

  53. Bleeker EJ, van Buchem MA, van Osch MJ (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29: 840–852

    Article  PubMed  Google Scholar 

  54. Thijs VN, Somford DM, Bammer R, Robberecht W, Moseley ME, Albers GW (2004) Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging. Stroke 35: 94–98

    Article  PubMed  Google Scholar 

  55. Chen JJ, Smith MR, Frayne R (2005) The impact of partial-volume effects in dynamic susceptibility contrast magnetic resonance perfusion imaging. J Magn Reson Imaging 22: 390–399

    Article  PubMed  Google Scholar 

  56. Wirestam R, Ryding E, Lindgren A, Geijer B, Holtås S, Ståhlberg F (2000) Absolute cerebral blood flow measured by dynamic susceptibility contrast MRI: a direct comparison with Xe-133 SPECT. Magn Reson Mater Phys 11: 96–103

    CAS  Google Scholar 

  57. van Osch MJP, Vonken EPA, Bakker CJG, Viergever MA (2001) Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45: 477–485

    Article  PubMed  Google Scholar 

  58. van Osch MJP, Vonken EPA, Viergever MA, van der Grond J, Bakker CJG (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49: 1067–1076

    Article  PubMed  Google Scholar 

  59. Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortion and their correction. J Magn Reson Imaging 22: 704–709

    Article  PubMed  Google Scholar 

  60. Duhamel G, Schlaug G, Alsop DC (2006) Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 55: 514–523

    Article  PubMed  Google Scholar 

  61. Knutsson L, Börjesson S, Larsson EM, Risberg J, Gustafson L, Passant U, Ståhlberg F, Wirestam R (2007) Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133-SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 26: 913–920

    Article  PubMed  Google Scholar 

  62. Kjølby BF, Mikkelsen IK, Pedersen M, Østergaard L, Kiselev VG (2009) Analysis of partial volume effects on arterial input functions using gradient echo: a simulation study. Magn Reson Med 61: 1300–1309

    Article  PubMed  Google Scholar 

  63. Rausch M, Scheffler K, Rudin M, Radu EW (2000) Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magn Reson Imaging 18: 1235–1243

    Article  PubMed  CAS  Google Scholar 

  64. Brunecker P, Villringer A, Schultze J, Nolte CH, Jungehülsing GJ, Endres M, Steinbrink J (2007) Correcting saturation effects of the arterial input function in dynamic susceptibility contrast-enhanced MRI: a Monte Carlo simulation. Magn Reson Imaging 25: 1300–1311

    Article  PubMed  Google Scholar 

  65. Brunecker P, Endres M, Nolte CH, Schultze J, Wegener S, Jungehülsing GJ, Müller B, Kerskens CM, Fiebach JB, Villringer A, Steinbrink (2008) Evaluation of an AIF correction algorithm for dynamic susceptibility contrast-enhanced perfusion MRI. J Magn Reson Med 60: 102–110

    Article  Google Scholar 

  66. Calamante F, Connelly A, van Osch MJ (2009) Nonlinear DeltaR*2 effects in perfusion quantification using bolus-tracking MRI. Magn Reson Med 61: 486–492

    Article  PubMed  Google Scholar 

  67. Akbudak E, Hsu RM, Li Y, Conturo TE (1998) ΔR* and ΔΦ contrast agent perfusion effects in blood: quantification and linearity assessment. In: Book of abstracts. Proceedings of 6th International Society for Magnetic Resonance in Medicine, p 1197

  68. Akbudak E, Kotys M, Conturo T (2004) Quadracity and hematocrit dependence of ΔR2* AIF signals at 3T: a blood phantom study under physiologic conditions. Syllabus of the ISMRM workshop on Quantitative Cerebral Perfusion Imaging Using MRI: A Technical Perspective, Venice, pp 10–11

  69. de Rochefort L, Nguyen T, Brown R, Spincemaille P, Choi G, Weinsaft J, Prince MR, Wang Y (2008) In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI. Med Phys 35: 5328–5339

    Article  PubMed  CAS  Google Scholar 

  70. Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32: 749–763

    Article  PubMed  CAS  Google Scholar 

  71. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44: 466–473

    Article  PubMed  CAS  Google Scholar 

  72. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36: 715–725

    Article  PubMed  Google Scholar 

  73. Schmitt M, Viallon M, Thelen M, Schreiber WG (2002) Quantification of myocardial blood flow and blood flow reserve in the presence of arterial dispersion: a simulation study. Magn Reson Med 47: 787–793

    Article  PubMed  Google Scholar 

  74. Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33: 1146–1151

    Article  PubMed  CAS  Google Scholar 

  75. Calamante F, Yim PJ, Cebral JR (2003) Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 19: 341–353

    Article  PubMed  Google Scholar 

  76. Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50: 164–174

    Article  PubMed  Google Scholar 

  77. Smith MR, Lu H, Trochet S, Frayne R (2004) Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Reson Med 51: 631–634

    Article  PubMed  CAS  Google Scholar 

  78. Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22: 718–722

    Article  PubMed  Google Scholar 

  79. Knutsson L, Larsson EM, Thilmann O, Ståhlberg F, Wirestam R (2006) Calculation of cerebral perfusion parameters using regional arterial input functions identified by factor analysis. J Magn Reson Imaging 23: 444–453

    Article  PubMed  Google Scholar 

  80. Østergaard L, Johannsen P, Høst-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [15 O]H 2 O positron emission tomography in humans. J Cereb Blood Flow Metab 18: 935–940

    Article  PubMed  Google Scholar 

  81. Wirestam R, Ståhlberg F (2005) Wavelet-based noise reduction for improved deconvolution of time-series data in dynamic susceptibility-contrast MRI. Magn Reson Mater Phys 18: 113–118

    Article  CAS  Google Scholar 

  82. Murase K, Kikuchi K, Miki H, Shimizu T, Ikezoe J (2001) Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging. J Magn Reson Imaging 13: 797–806

    Article  PubMed  CAS  Google Scholar 

  83. Carroll TJ, Rowley HA, Haughton VM (2003) Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology 227: 593–600

    Article  PubMed  Google Scholar 

  84. Alsop D, Wedmid A, Schlaug G (2002) Defining a local input function for perfusion quantification with bolus contrast MRI. In: Book of abstracts. Proceedings 10th International Society for Magnetic Resonance in Medicine, p 659

  85. Calamante F, Mørup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52: 789–797

    Article  PubMed  Google Scholar 

  86. Mouridsen K, Christensen S, Gyldensted L, Østergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55: 524–531

    Article  PubMed  Google Scholar 

  87. Grüner R, Björnarå BT, Moen G, Taxt T (2006) Magnetic resonance brain perfusion imaging with voxel-specific arterial input functions. J Magn Reson Imaging 23: 273–284

    Article  PubMed  Google Scholar 

  88. Christensen S, Wu O, Hjort N, Mouridsen K, Gottrup C, Fiehler J, Röther J, Østergaard L (2004) Local arterial input functions based on vascular territories. In: Book of abstracts. Proceedings of 12th International Society for Magnetic Resonance in Medicine, p 11

  89. Christensen S, Calamante F, Hjort N, Wu O, Blankholm AD, Desmond P, Davis S, Østergaard L (2008) Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J Magn Reson Imaging 27: 1371–1381

    Article  PubMed  Google Scholar 

  90. Lorenz C, Benner T, Lopez CJ, Ay H, Zhu MW, Aronen H, Karonen J, Liu Y, Nuutinen J, Sorensen AG (2006) Effect of using local arterial input functions on cerebral blood flow estimation. J Magn Reson Imaging 224: 57–65

    Article  Google Scholar 

  91. Lorenz C, Benner T, Chen PJ, Lopez CJ, Ay H, Zhu MW, Menezes NM, Aronen H, Karonen J, Liu Y, Nuutinen J, Sorensen AG (2006) Automated perfusion-weighted MRI using localized arterial input functions. J Magn Reson Imaging 24: 1133–1139

    Article  PubMed  Google Scholar 

  92. Ducreux D, Buvat I, Meder JF, Mikulis D, Crawley A, Fredy D, TerBrugge K, Lasjaunias P, Bittoun J (2006) Perfusion-weighted MR imaging studies in brain hypervascular diseases: comparison of arterial input function extractions for perfusion measurement. AJNR Am J Neuroradiol 27: 1059–1069

    PubMed  CAS  Google Scholar 

  93. Ko L, Salluzzi M, Frayne R, Smith M (2007) Reexamining the quantification of perfusion MRI data in the presence of bolus dispersion. Magn Reson Imaging 25: 639–643

    Article  Google Scholar 

  94. Kosior JC, Smith MR, Kosior RK, Frayne R (2009) Cerebral blood flow estimation in vivo using local tissue reference functions. J Magn Reson Imaging 29: 183–188

    Article  PubMed  Google Scholar 

  95. Weisskoff RM, Boxerman JL, Sorensen AG, Kulke SM, Campbell TA, Rosen BR (1994) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. In: Book of abstracts. Proceedings of 12th International Society for Magnetic Resonance in Medicine, p 279

  96. Vonken EPA, van Osch MJ, Bakker CJG, Viergever MA (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43: 820–827

    Article  PubMed  CAS  Google Scholar 

  97. Haselhorst R, Kappos L, Bilecen D, Scheffler K, Mori D, Radu EW, Seelig J (2000) Dynamic susceptibility contrast MR imaging of plaque development in multiple sclerosis: application of an extended blood–brain barrier leakage correction. J Magn Reson Imaging 11: 495–505

    Article  PubMed  CAS  Google Scholar 

  98. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27: 859–867

    PubMed  CAS  Google Scholar 

  99. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191: 41–51

    PubMed  CAS  Google Scholar 

  100. Rost E, Geske R, Baake M (2006) Signal analysis of impulse response functions in MR and CT measurements of cerebral blood flow. J Theor Biol 240: 451–458

    Article  PubMed  Google Scholar 

  101. Benner T, Heiland S, Erb G, Forsting M, Sartor K (1997) Accuracy of gamma-variate fits to concentration–time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. Magn Reson Imaging 15: 307–317

    Article  PubMed  CAS  Google Scholar 

  102. Wu Y, An H, Krim H, Lin W (2007) An independent component analysis approach for minimizing effects of recirculation in dynamic susceptibility contrast magnetic resonance imaging. J Cereb Blood Flow Metab 27: 632–645

    Article  PubMed  Google Scholar 

  103. Gall P, Mader I, Kiselev VG (2009) Extraction of the first bolus passage in dynamic susceptibility contrast perfusion measurements. Magn Reson Mater Phys 22: 241–249

    Article  CAS  Google Scholar 

  104. Kosior J, Frayne R (2009) DSC-MR Perfusion: leave tracer recirculation alone. In: Book of abstracts. Proceedings of 17th International Society for Magnetic Resonance in Medicine, p 1464

  105. Larson KB, Perman WH, Perlmutter JS, Gado MH, Ollinger JM, Zierler K (1994) Tracer-kinetic analysis for measuring regional cerebral blood flow by dynamic nuclear magnetic resonance imaging. J Theor Biol 170: 1–14

    Article  PubMed  CAS  Google Scholar 

  106. Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19: 690–699

    Article  PubMed  Google Scholar 

  107. Chen JJ, Smith MR, Frayne R (2005) Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification. Magn Reson Med 53: 700–707

    Article  PubMed  Google Scholar 

  108. Gobbel GT, Fike JR (1994) A deconvolution method for evaluating indicator-dilution curves. Phys Med Biol 39: 1833–1854

    Article  PubMed  CAS  Google Scholar 

  109. Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 43: 559–564

    Article  PubMed  CAS  Google Scholar 

  110. Sakoglu U, Sood R (2008) Cerebral blood flow estimation from perfusion-weighted MRI using FT-based MMSE filtering method. Magn Reson Imaging 26: 313–322

    Article  PubMed  Google Scholar 

  111. Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36: 726–736

    Article  PubMed  Google Scholar 

  112. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  113. Murase K, Shinohara M, Yamazaki Y (2001) Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 46: 3147–3159

    Article  PubMed  CAS  Google Scholar 

  114. Sourbron S, Luypaert R, Van Schuerbeek P, Dujardin M, Stadnik T (2004) Choice of the regularization parameter for perfusion quantification with MRI. Phys Med Biol 49: 3307–3324

    Article  PubMed  CAS  Google Scholar 

  115. Sourbron S, Luypaert R, Van Schuerbeek P, Dujardin M, Stadnik T, Osteaux M (2004) Deconvolution of dynamic contrast-enhanced MRI data by linear inversion: choice of the regularization parameter. Magn Reson Med 52: 209–213

    Article  PubMed  Google Scholar 

  116. Calamante F, Gadian DG, Connelly A (2003) Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 50: 1237–1247

    Article  PubMed  Google Scholar 

  117. Sourbron S, Luypaert R, Morhard D, Seelos K, Reiser M, Peller M (2007) Deconvolution of bolus-tracking data: a comparison of discretization methods. Phys Med Biol 52: 6761–6778

    Article  PubMed  CAS  Google Scholar 

  118. Vonken EPA, Beekman FJ, Bakker CJG, Viergever MA (1999) Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 41: 343–350

    Article  PubMed  CAS  Google Scholar 

  119. Willats L, Connelly A, Calamante F (2006) Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 56: 146–156

    Article  PubMed  Google Scholar 

  120. Willats L, Connelly A, Calamante F (2008) Minimising the effects of bolus dispersion in bolus-tracking MRI. NMR Biomed 21: 1126–1137

    Article  PubMed  CAS  Google Scholar 

  121. Andersen IK, Szymkowiak A, Rasmussen CE, Hanson LG, Marstrand JR, Larsson HB, Hansen LK (2002) Perfusion quantification using Gaussian process deconvolution. Magn Reson Med 48: 351–361

    Article  PubMed  CAS  Google Scholar 

  122. Grüner R, Taxt T (2006) Iterative blind deconvolution in magnetic resonance brain perfusion imaging. Magn Reson Med 55: 805–815

    Article  PubMed  Google Scholar 

  123. Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S (2006) Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 33: 570–579

    Article  PubMed  Google Scholar 

  124. Calamante F, Connelly A (2009) Perfusion precision in bolus-tracking MRI: estimation using the wild-bootstrap method. Magn Reson Med 61: 696–704

    Article  PubMed  Google Scholar 

  125. Zanderigo F, Bertoldo A, Pillonetto G, Cobelli C (2009) Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD and tikhonov. IEEE Trans Biomed 56: 1287–1297

    Article  Google Scholar 

  126. Lammertsma AA, Brooks DJ, Beaney RP, Turton DR, Kensett MJ, Heather JD, Marshall J, Jones T (1984) In vivo measurement of regional cerebral haematocrit using positron emission tomography. J Cereb Blood Flow Metab 4: 317–322

    PubMed  CAS  Google Scholar 

  127. Sakai F, Nakazawa K, Tazaki Y, Ishii K, Hino H, Igarashi H, Kanda T (1985) Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab 5: 207–213

    PubMed  CAS  Google Scholar 

  128. Hagen T, Bartylla K, Piepgras U (1999) Correlation of regional cerebral blood flow measured by stable xenon CT and perfusion MRI. J Comput Assist Tomogr 23: 257–264

    Article  PubMed  CAS  Google Scholar 

  129. Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, Ostergaard L, Powers WJ (2001) Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 14: 659–667

    Article  PubMed  CAS  Google Scholar 

  130. Chen JJ, Frayne R, Smith MR (2005) Reassessing the clinical efficacy of two MR quantitative DSC PWI CBF algorithms following cross-calibration with PET images. Phys Med Biol 50: 1251–1263

    Article  PubMed  Google Scholar 

  131. Ibaraki M, Ito H, Shimosegawa E, Toyoshima H, Ishigame K, Takahashi K, Kanno I, Miura S (2007) Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 27: 404–413

    Article  PubMed  Google Scholar 

  132. Grandin CB, Bol A, Smith AM, Michel C, Cosnard G (2005) CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatability and comparison with PET in humans. Neuroimage 26: 525–535

    PubMed  Google Scholar 

  133. Ziegelitz D, Starck G, Holtås S, Tullberg M, Edsbagge M, Wikkeslö C, Forsell-Aronson E, Knutsson L (2009) Absolute quantification of cerebral blood flow in normal volunteers: dynamic susceptibility contrast MRI compared with CT-perfusion. Magn Reson 62: 56–65

    Article  Google Scholar 

  134. Li TQ, Guang CZ, Østergaard L, Hindmarsh T, Moseley ME (2000) Quantification of cerebral blood flow by bolus tracking and artery spin tagging methods. Magn Reson Imaging 18: 503–512

    Article  Google Scholar 

  135. Engvall C, Ryding E, Wirestam R, Holtås S, Ljunggren K, Ohlsson T, Reinstrup P (2008) Human cerebral blood volume (CBV) measured by dynamic susceptibility contrast MRI and 99 mTc-RBC SPECT. J Neurosurg Anesthesiol 20: 41–44

    Article  PubMed  Google Scholar 

  136. Kim YR, Rebro KJ, Schmainda KM (2002) Water exchange and inflow affect the accuracy of T 1-GRE blood volume measurements: implications for the evaluation of tumor angiogenesis. Magn Reson Med 47: 1110–1120

    Article  PubMed  CAS  Google Scholar 

  137. Kuppusamy K, Lin W, Cizek GR, Haacke EM (1996) In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology 201: 106–112

    PubMed  CAS  Google Scholar 

  138. Shin W, Cashen TA, Horowitz SW, Sawlani R, Carroll TJ (2006) Quantitative CBV measurement from static T1 changes in tissue and correction for intravascular water exchange. Magn Reson Med 56: 138–145

    Article  PubMed  Google Scholar 

  139. Perles-Barbacaru AT, Lahrech H (2007) A new magnetic resonance imaging method for mapping the cerebral blood volume fraction: the rapid steady-state T1 method. J Cereb Blood Flow Metab 27: 618–631

    Article  PubMed  Google Scholar 

  140. Sakaie KE, Shin W, Curtin KR, McCarthy RM, Cashen TA, Carroll TJ (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 21: 512–519

    Article  PubMed  Google Scholar 

  141. Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58: 1232–1241

    Article  PubMed  Google Scholar 

  142. Wirestam R, Knutsson L, Risberg J, Börjesson S, Larsson EM, Gustafson L, Passant U, Ståhlberg F (2007) Attempts to improve absolute quantification of cerebral blood flow in dynamic susceptibility contrast magnetic resonance imaging: a simplified T1-weighted steady-state cerebral blood volume approach. Acta Radiol 48: 550–556

    Article  PubMed  CAS  Google Scholar 

  143. Shah MK, Shin W, Mouannes J, Shaibani A, Horowitz SW, Carroll TJ (2008) Method for rapid calculation of quantitative cerebral perfusion. J Magn Reson Imaging 28: 1258–1265

    Article  PubMed  Google Scholar 

  144. Zaharchuk G, Straka M, Shankaranarayanan A, Alsop DC, Marks ME, Moseley M, Bammer R (2009) Bolus perfusion-weighted imaging measurement of quantitative cerebral blood flow can be improved using an arterial spin label derived scaling factor: a comparative xenon CT study. In: Book of abstracts. Proceedings of 17th International Society for Magnetic Resonance in Medicine, p 3617

  145. Spilt A, Box FM, van der Geest RJ, Reiber JH, Kunz P, Kamper AM, Blauw GJ, van Buchem MA (2002) Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imaging 16: 1–5

    Article  PubMed  Google Scholar 

  146. Bonekamp D, Barker PB (2009) Phase contrast MRI absolute cerebral blood flow estimation: a method to obtain absolute cerebral blood flow maps from dynamic susceptibility contrast imaging. In: Book of abstracts. Proceedings of 17th International Society for Magnetic Resonance in Medicine, p 725

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Knutsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knutsson, L., Ståhlberg, F. & Wirestam, R. Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phy 23, 1–21 (2010). https://doi.org/10.1007/s10334-009-0190-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-009-0190-2

Keywords

Navigation