Skip to main content

Advertisement

Log in

Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation.

Materials and methods

The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T1-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T2-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading.

Results

Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T.

Conclusion

Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wrede KH, Dammann P, Johst S, Monninghoff C, Schlamann M, Maderwald S, Sandalcioglu IE, Ladd ME, Forsting M, Sure U, Umutlu L (2015) Non-enhanced MR Imaging of cerebral arteriovenous malformations at 7 Tesla. Eur Radiol. doi:10.1007/s00330-015-3875-0

    Google Scholar 

  2. Wrede KH, Dammann P, Monninghoff C, Johst S, Maderwald S, Sandalcioglu IE, Muller O, Ozkan N, Ladd ME, Forsting M, Schlamann MU, Sure U, Umutlu L (2014) Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla. PLoS One 9(1):e84562

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi OC, Rosen B (2014) Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res 74(17):4622–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lupo JM, Nelson SJ (2014) Advanced magnetic resonance imaging methods for planning and monitoring radiation therapy in patients with high-grade glioma. Semin Radiat Oncol 24(4):248–258

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zamecnik P, Essig M (2013) Perspectives of 3 T magnetic resonance imaging in radiosurgical treatment planning. Acta Neurochir Suppl 116:187–191

    PubMed  Google Scholar 

  6. Leung D, Han X, Mikkelsen T, Nabors LB (2014) Role of MRI in primary brain tumor evaluation. J Natl Compr Cancer Netw: J Natl Compr Canc Netw 12(11):1561–1568

    PubMed  Google Scholar 

  7. Di Ieva A, God S, Grabner G, Grizzi F, Sherif C, Matula C, Tschabitscher M, Trattnig S (2013) Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology 55(1):35–40

    Article  PubMed  Google Scholar 

  8. Kraff O, Fischer A, Nagel AM, Monninghoff C, Ladd ME (2015) MRI at 7 Tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 41(1):13–33

    Article  PubMed  Google Scholar 

  9. Lupo JM, Li Y, Hess CP, Nelson SJ (2011) Advances in ultra-high field MRI for the clinical management of patients with brain tumors. Curr Opin Neurol 24(6):605–615

    Article  PubMed  Google Scholar 

  10. van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR (2013) Clinical applications of 7 T MRI in the brain. Eur J Radiol 82(5):708–718

    Article  PubMed  Google Scholar 

  11. Grabner G, Nobauer I, Elandt K, Kronnerwetter C, Woehrer A, Marosi C, Prayer D, Trattnig S, Preusser M (2012) Longitudinal brain imaging of five malignant glioma patients treated with bevacizumab using susceptibility-weighted magnetic resonance imaging at 7 T. Magn Reson Imaging 30(1):139–147

    Article  CAS  PubMed  Google Scholar 

  12. Moenninghoff C, Kraff O, Maderwald S, Umutlu L, Theysohn JM, Ringelstein A, Wrede KH, Deuschl C, Altmeppen J, Ladd ME, Forsting M, Quick HH, Schlamann M (2015) Diffuse axonal injury at ultra-high field MRI. PLoS One 10(3):e0122329

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kraff O, Wrede KH, Schoemberg T, Dammann P, Noureddine Y, Orzada S, Ladd ME, Bitz AK (2013) MR safety assessment of potential RF heating from cranial fixation plates at 7 T. Med Phys 40(4):042302

    Article  PubMed  Google Scholar 

  14. Cunningham AS, Harding S, Chatfield DA, Hutchinson P, Carpenter TA, Pickard JD, Menon DK (2005) Metallic neurosurgical implants for cranial reconstruction and fixation: assessment of magnetic field interactions, heating and artefacts at 3.0 Tesla. Br J Neurosurg 19(2):167–172

    Article  CAS  PubMed  Google Scholar 

  15. Rauschenberg J, Groebner J, Nagel AM, Biller A, Semmler W, Bock M (2010) MR safety measurements of intracranial fixation devices at 7T. In: Proceedings of the 18th scientific meeting, international society for magnetic resonance in medicine, Stockholm, p 778

  16. Orzada S, Kraff O, Schäfer L, Brote I, Bahr A, Bolz T, Maderwald S, Ladd ME, Bitz AK (2009) 8-channel transmit/receive head coil for 7 T human imaging using intrinsically decoupled strip line elements with meanders. In: Proceedings of the 17th scientific meeting, international society for magnetic resonance in medicine, Honolulu, p 3010

  17. Bitz AK, Kraff O, Orzada S, Maderwald S, Brote I, Johst S, Ladd ME (2011) Assessment of RF safety of transmit coils at 7 Tesla by experimental and numerical procedures. In: Proceedings of the 19th scientific meeting, international society for magnetic resonance in medicine, Montreal, p 490

  18. International Electrotechnical Commission (2015) Medical electrical equipment—part 2–33: particular requirements for the safety of magnetic resonance diagnostic devices. 60601-2-33:2015. International Electrotechnical Commission, Geneva

  19. Jiru F, Klose U (2006) Fast 3D radiofrequency field mapping using echo-planar imaging. Magn Reson Med 56(6):1375–1379

    Article  CAS  PubMed  Google Scholar 

  20. Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57(1):192–200

    Article  PubMed  Google Scholar 

  21. Theysohn JM, Kraff O, Maderwald S, Schlamann MU, de Greiff A, Forsting M, Ladd SC, Ladd ME, Gizewski ER (2009) The human hippocampus at 7 T-in vivo MRI. Hippocampus 19(1):1–7

    Article  PubMed  Google Scholar 

  22. Wrede KH, Johst S, Dammann P, Umutlu L, Schlamann MU, Sandalcioglu IE, Sure U, Ladd ME, Maderwald S (2012) Caudal image contrast inversion in MPRAGE at 7 Tesla: problem and solution. Acad Radiol 19(2):172–178

    Article  PubMed  Google Scholar 

  23. Dammann P, Barth M, Zhu Y, Maderwald S, Schlamann M, Ladd ME, Sure U (2010) Susceptibility weighted magnetic resonance imaging of cerebral cavernous malformations: prospects, drawbacks, and first experience at ultra-high field strength (7-Tesla) magnetic resonance imaging. Neurosurg Focus 29(3):E5

    Article  PubMed  Google Scholar 

  24. Opderbeck T (2015) New 7 Tesla MRI research system ready for future clinical use. Siemens Healthcare GmbH. http://www.siemens.com/press/PR2015060231HCEN. Accessed 08 Dec 2015

  25. Sammet CL, Yang X, Wassenaar PA, Bourekas EC, Yuh BA, Shellock F, Sammet S, Knopp MV (2013) RF-related heating assessment of extracranial neurosurgical implants at 7T. Magn Reson Imaging 31(6):1029–1034

    Article  PubMed  Google Scholar 

  26. Feng DX, McCauley JP, Morgan-Curtis FK, Salam RA, Pennell DR, Loveless ME, Dula AN (2015) Evaluation of 39 medical implants at 7.0 T. Br J Radiol 88(1056):20150633

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bixia Chen.

Ethics declarations

Funding

This study was funded by Interne Forschungsförderung Essen (IFORES), University Hospital Essen, University Duisburg-Essen (grant number D/107-40770).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Schoemberg, T., Kraff, O. et al. Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study. Magn Reson Mater Phy 29, 389–398 (2016). https://doi.org/10.1007/s10334-016-0548-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0548-1

Keywords

Navigation