Skip to main content
Log in

Methods for Three-Dimensional Geometric Characterization of the Arterial Vasculature

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Complex vascular anatomy often affects endovascular procedural outcome. Accurate quantitative assessment of three-dimensional (3D) in-vivo arterial morphology is therefore vital for endovascular device design, and preoperative planning of percutaneous interventions. The aim of this work was to establish geometric parameters describing arterial branch origin, trajectory, and vessel curvature in 3D space that eliminate the errors implicit in planar measurements. 3D branching parameters at visceral and aortic bifurcation sites, as well as arterial tortuosity were determined from vessel centerlines derived from magnetic resonance angiography data for three subjects. Errors in coronal measurements of 3D branching angles for the right and left renal arteries were 3.1 ± 3.4° and 7.5 ± 3.7°, respectively. Distortion of the anterior visceral branching angles from sagittal measurements was less pronounced. Asymmetry in branching and planarity of the common iliac arteries was observed at aortic bifurcations. The renal arteries possessed considerably greater 3D curvature than the abdominal aorta and common iliac vessels with mean average values of 0.114 ± 0.015 and 0.070 ± 0.019 mm−1 for the left and right, respectively. In conclusion, planar projections misrepresented branch trajectory, vessel length, and tortuosity proving the importance of 3D geometric characterization for possible applications in planning of endovascular interventional procedures and providing parameters for endovascular device design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

MRA:

magnetic resonance angiography

3D:

three-dimensional

2D:

two-dimensional

MIP:

maximum intensity projection

EVAR:

endovascular aneurysm repair

DICOM:

digital imaging and communications in medicine

DFM:

distance factor metric

κ:

curvature

TC :

total curvature

AC :

average curvature

τ:

torsion

TT :

total torsion

CC :

combined curvature

TCC :

total combined curvature

RMS :

root-mean-squared

CT:

celiac trunk

SMA:

superior mesenteric artery

RRA:

right renal artery

LRA:

left renal artery

RCIA:

right common iliac artery

LCIA:

left common iliac artery

COR:

coronal

AX:

axial

SAG:

sagittal

References

  1. Ahmadi R. A., M. Schillinger, M. Haumer, A. Willfort, E. Minar 2001 Carotid stenting in a case of combined kinking and stenosis. Cardiovasc. Intervent. Radiol., 24: 197–199

    Article  PubMed  CAS  Google Scholar 

  2. Bargeron C. B., G. M. Hutchins, G. W. Moore, O. J. Deters, F. F. Mark, M. H. Friedman 1986 Distribution of the geometric parameters of human aortic bifurcations. Arteriosclerosis, 6: 109–113

    PubMed  CAS  Google Scholar 

  3. Beebe H. G. 1997 Imaging modalities for aortic endografting. J. Endovasc. Surg., 4: 111–123

    Article  PubMed  CAS  Google Scholar 

  4. Beebe H. G., T. Jackson, J. P. Pigott 1995 Aortic aneurysm morphology for planning endovascular aortic grafts: limitations of conventional imaging methods. J. Endovasc. Surg., 2: 139–148

    Article  PubMed  CAS  Google Scholar 

  5. Beregi J. P., B. Mauroy, S. Willoteaux, C. Mounier-Vehier, M. Remy-Jardin, J. Francke 1999 Anatomic variation in the origin of the main renal arteries: spiral CTA evaluation. Eur. Radiol., 9: 1330–1334

    Article  PubMed  CAS  Google Scholar 

  6. Berkefeld J., B. Turowski, A. Dietz, H. Lanfermann, M. Sitzer, T. Schmitz-Rixen, H. Steinmetz, F. E. Zanella 2002 Recanalization results after carotid stent placement. Am. J. Neuroradiol., 23: 113–120

    PubMed  Google Scholar 

  7. Bharadvaj B. K., R. F. Mabon, D. P. Giddens 1982 Steady flow in a model of the human carotid bifurcation. Part I. Flow visualization. J. Biomech., 15: 349–362

    Article  PubMed  CAS  Google Scholar 

  8. Brinkman A. M., P. B. Baker, W. P. Newman, R. Vigorito, M. H. Friedman 1994 Variability of human coronary artery geometry: an angiographic study of the left anterior descending arteries of 30 autopsy hearts. Ann. Biomed. Eng., 22: 34–44

    Article  PubMed  CAS  Google Scholar 

  9. Bullitt E., G. Gerig, S. M. Pizer, W. L. Lin, S. R. Aylward 2003 Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Trans. Med. Imaging, 22: 1163–1171

    Article  PubMed  Google Scholar 

  10. Buth J., R. J. Laheij 2000 Early complications and endoleaks after endovascular abdominal aortic aneurysm repair: report of a multicenter study. J. Vasc. Surg., 31: 134–146

    Article  PubMed  CAS  Google Scholar 

  11. Cardaioli P., M. Giordan, M. Panfili, R. Chioin 2004 Complication with an embolic protection device during carotid angioplasty. Catheter. Cardiovasc. Intervent., 62: 234–236

    Article  Google Scholar 

  12. Caro C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, C. L. Dumoulin 1996 Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R. Soc. London, 452: 185–197

    Google Scholar 

  13. Chen S. Y., J. D. Carroll 2003 Kinematic and deformation analysis of 4-D coronary arterial trees reconstructed from cine angiograms. IEEE Trans. Med. Imaging, 22: 710–721

    Article  PubMed  Google Scholar 

  14. Chen S. Y. J., J. D. Carroll, J. C. Messenger 2002 Quantitative analysis of reconstructed 3-D coronary arterial tree and intracoronary devices. IEEE Trans. Med. Imaging, 21: 724–740

    Article  PubMed  Google Scholar 

  15. Chong P. L., K. Salhiyyah, P. D. Dodd 2005 The role of carotid endarterectomy in the endovascular era. Eur. J. Vasc. Endovasc. Surg., 29: 597–600

    Article  PubMed  CAS  Google Scholar 

  16. Dawson D. L., J. C. Hellinger, T. T. Terramani, S. Najibi, L. G. Martin, A. B. Lumsden 2002 Iliac artery kinking with endovascular therapies: technical considerations. J. Vasc. Interv. Radiol., 13: 729–733

    Article  PubMed  Google Scholar 

  17. Ding Z., K. Wang, J. Li, X. Cong 2001 Flow field and oscillatory shear stress in a tuning-fork-shaped model of the average human carotid bifurcation. J. Biomech., 34: 1555–1562

    Article  PubMed  CAS  Google Scholar 

  18. Ding Z., H. Zhu, M. H. Friedman 2002 Coronary artery dynamics in vivo. Ann. Biomed. Eng., 30: 419–429

    Article  PubMed  Google Scholar 

  19. Draney M. T., C. K. Zarins, C. A. Taylor 2005 Three-dimensional analysis of renal artery bending motion during respiration. J. Endovasc. Ther., 12: 380–386

    Article  PubMed  Google Scholar 

  20. Eze C. U., R. Gupta, D. L. Newman 2000 A comparison of quantitative measures of arterial tortuosity using sine wave simulations and 3D wire models. Phys. Med. Biol., 45: 2593–2599

    Article  PubMed  CAS  Google Scholar 

  21. Fanucci E., A. Orlacchio, M. Pocek 1988 The vascular geometry of human arterial bifurcations. Invest. Radiol., 23: 713–718

    Article  PubMed  CAS  Google Scholar 

  22. Forster F. K., P. M. Chikos, J. S. Frazier 1985 Geometric modeling of the carotid bifurcation in humans: implications in ultrasonic Doppler and radiologic investigations. J. Clin. Ultrasound, 13: 385–390

    Article  PubMed  CAS  Google Scholar 

  23. Friedman M. H., O. J. Deters, F. F. Mark, C. B. Bargeron, G. M. Hutchins 1983 Arterial geometry affects hemodynamics. A potential risk factor for athersoclerosis. Atherosclerosis, 46: 225–231

    Article  PubMed  CAS  Google Scholar 

  24. Friedman M. H., Z. Ding 1998 Relation between the structural asymmetry of coronary branch vessels and the angle at their origin. J. Biomech., 31: 273–278

    Article  PubMed  CAS  Google Scholar 

  25. Friedman M. H., Z. Ding 1998 Variability of the planarity of the human aortic bifurcation. Med. Eng. Phys., 20: 469–472

    Article  PubMed  CAS  Google Scholar 

  26. Hart W. E., M. Goldbaum, B. Cote, P. Kube, M. R. Nelson 1999 Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform., 53: 239–252

    Article  PubMed  CAS  Google Scholar 

  27. Henry M., I. Henry, C. Klonaris, I. Masson, M. Hugel, K. Tzvetanov, G. Ethevenot, B. E. Le, S. Kownator, F. Luizi, B. Folliguet 2002 Benefits of cerebral protection during carotid stenting with the PercuSurge GuardWire system: midterm results. J. Endovasc. Ther., 9: 1–13

    Article  PubMed  Google Scholar 

  28. Kalliafas S., J. N. Albertini, J. Macierewicz, S. W. Yusuf, S. C. Whitaker, S. T. Macsweeney, P. W. Wenham, B. R. Hopkinson 2000 Incidence and treatment of intraoperative technical problems during endovascular repair of complex abdominal aortic aneurysms. J. Vasc. Surg., 31: 1185–1192

    Article  PubMed  CAS  Google Scholar 

  29. Lee W. A., Y. G. Wolf, B. B. Hill, P. Cipriano, T. J. Fogarty, C. K. Zarins 2002 The first 150 endovascular AAA repairs at a single institution: how steep is the learning curve? J. Endovasc. Ther., 9: 269–276

    Article  PubMed  Google Scholar 

  30. Lee Y. T., W. F. Keitzer, F. R. Watson, H. Liu 1982 Vascular geometry at the abdominal aortic bifurcation. J. Am. Med. Womens Assoc., 37: 77–81

    PubMed  CAS  Google Scholar 

  31. Long Q., X. Y. Xu, M. Bourne, T. M. Griffith 2000 Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn. Reson. Med., 43: 565–576

    Article  PubMed  CAS  Google Scholar 

  32. Moore J. A., B. K. Rutt, S. J. Karlik, K. Yin, C. R. Ethier 1999 Computational blood flow modeling based on in vivo measurements. Ann. Biomed. Eng., 27: 627–640

    Article  PubMed  CAS  Google Scholar 

  33. Moore J. A., D. A. Steinman, C. R. Ethier 1998 Computational blood flow modelling: errors associated with reconstructing finite element models from magnetic resonance images. J. Biomech., 31: 179–184

    Article  PubMed  CAS  Google Scholar 

  34. Naslund T. C., W. H. Edwards Jr., D. F. Neuzil, R. S. Martin III, S. O. Snyder Jr., J. L. Mulherin Jr., M. Failor, K. McPherson 1997 Technical complications of endovascular abdominal aortic aneurysm repair. J. Vasc. Surg., 26: 502–509, discussion 509–510

    Article  PubMed  CAS  Google Scholar 

  35. Pao Y. C., J. T. Lu, E. L. Ritman 1992 Bending and twisting of an in vivo coronary artery at a bifurcation. J. Biomech., 25: 287–295

    Article  PubMed  CAS  Google Scholar 

  36. Pennington N., R. W. Soames 2005 The anterior visceral branches of the abdominal aorta and their relationship to the renal arteries. Surg. Radiol. Anat., 27: 395–403

    Article  PubMed  Google Scholar 

  37. Powell R. J., C. Alessi, B. Nolan, E. Rzucidlo, M. Fillinger, D. Walsh, M. Wyers, R. Zwolak, J. L. Cronenwett 2006 Comparison of embolization protection device-specific technical difficulties during carotid artery stenting. J. Vasc. Surg., 44: 56–61

    Article  PubMed  Google Scholar 

  38. Puentes J., C. Roux, M. Garreau, J. L. Coatrieux 1998 Dynamic feature extraction of coronary artery motion using DSA image sequences. IEEE Trans. Med. Imaging, 17: 857–871

    Article  PubMed  CAS  Google Scholar 

  39. Quinn S. F., J. Kim, R. C. Sheley, J. H. Frankhouse 2001 “Accordion” deformity of a tortuous external iliac artery after stent-graft placement. J. Endovasc. Ther., 8: 93–98

    Article  PubMed  CAS  Google Scholar 

  40. Sharma S., R. M. Makkar 2003 Percutaneous intervention on the LIMA: tackling the tortuosity. J. Invasive Cardiol., 15: 359–362

    PubMed  Google Scholar 

  41. Smedby O. 1998 Geometrical risk factors for atherosclerosis in the femoral artery: a longitudinal angiographic study. Ann. Biomed. Eng., 26: 391–397

    Article  PubMed  CAS  Google Scholar 

  42. Smedby O., L. Bergstrand 1996 Tortuosity and atherosclerosis in the femoral artery: what is cause and what is effect? Ann. Biomed. Eng., 24: 474–480

    Article  PubMed  CAS  Google Scholar 

  43. Smedby O., N. Hogman, S. Nilsson, U. Erikson, A. G. Olsson, G. Walldius 1993 2-Dimensional tortuosity of the superficial femoral-artery in early atherosclerosis. J. Vasc. Res., 30: 181–191

    Article  PubMed  CAS  Google Scholar 

  44. Smith R. F., B. K. Rutt, A. J. Fox, R. N. Rankin, D. W. Holdsworth 1996 Geometric characterization of stenosed human carotid arteries. Acad. Radiol., 3: 898–911

    Article  PubMed  CAS  Google Scholar 

  45. Spanos V., G. Stankovic, A. Colombo 2003 A tortuous distal carotid artery: how to overcome the problem, with the aim of guaranteeing distal protection. Int. J. Cardiovasc. Intervent., 5: 77–80

    Article  PubMed  Google Scholar 

  46. Stanley B. M., J. B. Semmens, Q. Mai, M. A. Goodman, D. E. Hartley, C. Wilkinson, M. D. Lawrence-Brown 2001 Evaluation of patient selection guidelines for endoluminal AAA repair with the Zenith Stent-Graft: the Australasian experience. J. Endovasc. Ther., 8: 457–464

    Article  PubMed  CAS  Google Scholar 

  47. Steinman D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, J. D. Spence 2002 Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med., 47: 149–159

    Article  PubMed  Google Scholar 

  48. Sun H., B. D. Kuban, P. Schmalbrock, M. H. Friedman 1994 Measurement of the geometric parameters of the aortic bifurcation from magnetic resonance images. Ann. Biomed. Eng., 22: 229–239

    Article  PubMed  CAS  Google Scholar 

  49. Thomas J. B., L. Antiga, S. L. Che, J. S. Milner, D. A. Steinman, J. D. Spence, B. K. Rutt 2005 Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke, 36: 2450–2456

    Article  PubMed  Google Scholar 

  50. Tillich M., B. B. Hill, D. S. Paik, K. Petz, S. Napel, C. K. Zarins, G. D. Rubin 2001 Prediction of aortoiliac stent-graft length: comparison of measurement methods. Radiology, 220: 475–483

    PubMed  CAS  Google Scholar 

  51. Torsello G., N. Osada, H. J. Florek, S. Horsch, H. Kortmann, G. Luska, R. Scharrer-Pamler, W. Schmiedt, T. Umscheid, G. Wozniak 2006 Long-term outcome after Talent endograft implantation for aneurysms of the abdominal aorta: a multicenter retrospective study. J. Vasc. Surg., 43: 277–284

    Article  PubMed  Google Scholar 

  52. Umscheid T., W. J. Stelter 1999 Time-related alterations in shape, position, and structure of self-expanding, modular aortic stent-grafts: a 4-year single-center follow-up. J. Endovasc. Surg., 6: 17–32

    Article  PubMed  CAS  Google Scholar 

  53. Velazquez O. C., E. Y. Woo, J. P. Carpenter, M. A. Golden, C. F. Barker, R. M. Fairman 2004 Decreased use of iliac extensions and reduced graft junctions with software-assisted centerline measurements in selection of endograft components for endovascular aneurysm repair. J. Vasc. Surg., 40: 222–227

    Article  PubMed  Google Scholar 

  54. Verschuyl E. J., R. Kaatee, F. J. Beek, G. Pasterkamp, W. H. Bush, J. J. Beutler, P. J. van der Ven, W. P. Mali 1997 Renal artery origins: location and distribution in the transverse plane at CT. Radiology, 203: 71–75

    PubMed  CAS  Google Scholar 

  55. Wensing P. J., F. G. Scholten, P. C. Buijs, M. J. Hartkamp, W. P. Mali, B. Hillen 1995 Arterial tortuosity in the femoropopliteal region during knee flexion: a magnetic resonance angiographic study. J. Anat., 187 (Pt 1): 133–139

    PubMed  Google Scholar 

  56. White G. H., J. May, R. Waugh, J. P. Harris, X. Chaufour, W. Yu, M. S. Stephen 1999 Shortening of endografts during deployment in endovascular AAA repair. J. Endovasc. Surg., 6: 4–10

    Article  PubMed  CAS  Google Scholar 

  57. Whittaker D. R., J. Dwyer, M. F. Fillinger 2005 Prediction of altered endograft path during endovascular abdominal aortic aneurysm repair with the Gore Excluder. J. Vasc. Surg., 41: 575–583

    Article  PubMed  Google Scholar 

  58. Wijesinghe L. D., D. J. Scott, D. Kessel 1997 Analysis of renal artery geometry may assist in the design of new stents for endovascular aortic aneurysm repair. Br. J. Surg., 84: 797–799

    Article  PubMed  CAS  Google Scholar 

  59. Willems P. W., K. S. Han, B. Hillen 2000 Evaluation by solid vascular casts of arterial geometric optimisation and the influence of ageing. J. Anat., 196: 161–171

    Article  PubMed  Google Scholar 

  60. Wolf Y. G., M. Tillich, W. A. Lee, G. D. Rubin, T. J. Fogarty, C. K. Zarins 2001 Impact of aortoiliac tortuosity on endovascular repair of abdominal aortic aneurysms: evaluation of 3D computer-based assessment. J. Vasc. Surg., 34: 594–599

    Article  PubMed  CAS  Google Scholar 

  61. Zamir M. 1981 Three-dimensional aspects of arterial branching. J. Theor. Biol., 90: 457–476

    Article  PubMed  CAS  Google Scholar 

  62. Zamir M., N. Brown 1982 Arterial branching in various parts of the cardiovascular system. Am. J. Anat., 163: 295–307

    Article  PubMed  CAS  Google Scholar 

  63. Zamir M., N. Brown 1983 Internal geometry of arterial bifurcations. J. Biomech., 16: 857–863

    Article  PubMed  CAS  Google Scholar 

  64. Zamir M., P. Sinclair 1991 Origin of the brachiocephalic trunk, left carotid, and left subclavian arteries from the arch of the human aorta. Invest. Radiol., 26: 128–133

    Article  PubMed  CAS  Google Scholar 

  65. Zanchetta M., L. Pedon, G. Rigatelli, Z. Olivari, M. Zennaro, P. Maiolino 2004 Pseudo-lesion of internal mammary artery graft and left anterior descending artery during percutaneous transluminal angioplasty—a case report. Angiology, 55: 459–462

    Article  PubMed  Google Scholar 

  66. Zhu H., M. H. Friedman 2003 Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler. Thromb. Vasc. Biol., 23: 2260–2265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ms. Geraldine Dowd, Clinical Specialist Radiographer, University College Hospital, Galway for her help and James Coburn for his technical expertise. This work was supported with funds from Irish Research Council for Science, Engineering, and Technology (IRCSET): funded by the National Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay S. Pandit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Flynn, P.M., O’Sullivan, G. & Pandit, A.S. Methods for Three-Dimensional Geometric Characterization of the Arterial Vasculature. Ann Biomed Eng 35, 1368–1381 (2007). https://doi.org/10.1007/s10439-007-9307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9307-9

Keywords

Navigation