Skip to main content
Log in

Effects of Disturbed Flow on Endothelial Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 23 January 2010

Abstract

Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. The shear stress resulting from blood flow modulates EC functions by activating mechano-sensors, signaling pathways, and gene and protein expressions. Shear stress with a clear direction resulting form pulsatile or steady flow causes only transient activation of pro-inflammatory and proliferative pathways, which become down-regulated when such directed shearing is sustained. In contrast, shear flow without a definitive direction (e.g., disturbed flow in regions of complex geometry) causes sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to shear flows with a clear direction involve the remodeling of EC structure to maintain vascular homeostasis and are athero-protective. Such regulatory mechanism does not operate effectively when the flow pattern is disturbed. Therefore, the branch points and other regions of the arterial tree with a complex geometry are prone to atherogenesis, whereas the straight part of the arterial tree is generally spared. Understanding of the EC responses to different flow patters helps to elucidate the mechanism of the region-specific localization of atherosclerosis in the arterial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen Y. L., K. M. Jan, H. S. Lin, S. Chien. Ultrastructural studies on macromolecular permeability in relation to endothelial cell turnover. Atherosclerosis 118:89–104, 1995

    Article  CAS  PubMed  Google Scholar 

  2. Chien S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol. 83:131–151, 2003

    Article  CAS  PubMed  Google Scholar 

  3. Chien S. Molecular basis of rheological modulation of endothelial functions: importance of stress direction. Biorheology 43:95–116, 2006

    CAS  PubMed  Google Scholar 

  4. Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292:H1209–H1224, 2007

    Article  CAS  PubMed  Google Scholar 

  5. Chien S., S. J. Lin, S. Weinbaum, M. M. Lee, K. M. Jan. The role of arterial endothelial cell mitosis in macromolecular permeability. Adv. Exp. Med. Biol. 242:59–73, 1988

    CAS  PubMed  Google Scholar 

  6. Chiu J. J., D. L. Wang, S. Chien, R. Skalak, S. Usami. Effects of disturbed flow on endothelial cells. J. Biomech. Eng. 120:2–8, 1998

    Article  CAS  PubMed  Google Scholar 

  7. Chuang P. T., H. J. Cheng, S. J. Lin, K. M. Jan, M. M. Lee, S. Chien. Macromolecular transport across arterial and venous endothelium in rats. Studies with Evans blue-albumin and horseradish peroxidase. Arteriosclerosis 10:188–197, 1990

    CAS  PubMed  Google Scholar 

  8. Colangelo S., B. L. Langille, A. I. Gotlieb. Three patterns of distribution characterize the organization of endothelial microfilaments at aortic flow dividers. Cell Tissue Res. 278: 235–242, 1994

    Article  CAS  PubMed  Google Scholar 

  9. Dai G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. USA 101:14871–14876, 2004

    Article  CAS  PubMed  Google Scholar 

  10. Fukushima T., T. Karino, H. L. Goldsmith. Disturbances of flow through transparent dog aortic arch. Heart Vessels 1:24–28, 1985

    Article  CAS  PubMed  Google Scholar 

  11. Galbraith C. G., R. Skalak, S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskel. 40:317–330, 1998

    Article  CAS  Google Scholar 

  12. Glagov S., C. Zarins, D. P. Giddens, D. N. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112:1018–1031, 1988

    CAS  PubMed  Google Scholar 

  13. Goldsmith H. L., T. Karino. Interactions of human blood cells with the vascular endothelium. Ann. N. Y. Acad. Sci. 516:468–483, 1987

    Article  CAS  PubMed  Google Scholar 

  14. Hsiai T. K., S. K. Cho, P. K. Wong, M. Ing, A. Salazar, et al. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17:1648–1657, 2003

    Article  CAS  PubMed  Google Scholar 

  15. Huang A. L., K. M. Jan, S. Chien. Role of intercellular junctions in the passage of horseradish peroxidase across aortic endothelium. Lab. Invest. 67:201–209, 1992

    CAS  PubMed  Google Scholar 

  16. Karino T., H. L. Goldsmith. Disturbed flow in models of branching vessels. Trans. Am. Soc. Art. Int. Org. 26:500–506, 1980

    CAS  Google Scholar 

  17. Karino T., H. L. Goldsmith, M. Motomiya, S. Mabuchi, Y. Sohara. Flow patterns in vessels of simple and complex geometries. Ann. N. Y. Acad. Sci. 516:422–441, 1987

    Article  CAS  PubMed  Google Scholar 

  18. Kuo C. T., M. L. Veselits, J. M. Leiden. Lklf and fasl expression: corrections and clarification. Science 278:788–789, 1997

    Article  CAS  PubMed  Google Scholar 

  19. Kwak B. R., F. Mulhaupt, N. Veillard, D. B. Gros, F. Mach. Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 22:225–230, 2002

    Article  CAS  PubMed  Google Scholar 

  20. Li Y. S., J. H. Haga, S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38:1949–1971, 2005

    Article  PubMed  Google Scholar 

  21. Li Y. S., J. Y. Shyy, S. Li, J. Lee, B. Su, et al. The Ras-JNK pathway is involved in shear-induced gene expression. Mol. Cell. Biol. 16:5947–5954, 1996

    CAS  PubMed  Google Scholar 

  22. Lin K., P. P. Hsu, B. P. Chen, S. Yuan, S. Usami, et al. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc. Natl. Acad. Sci. USA 97:9385–9389, 2000

    Article  CAS  PubMed  Google Scholar 

  23. Lin S. J., K. M. Jan, S. Chien. Temporal and spatial changes in macromolecular uptake in rat thoracic aorta and relation to [3h]thymidine uptake. Atherosclerosis 85:229–238, 1990

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y., B. P. Chen, M. Lu, Y. Zhu, M. B. Stemerman, et al. Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler. Thromb. Vasc. Biol. 22:76–81, 2002

    Article  PubMed  Google Scholar 

  25. Malinauskas R. A., R. A. Herrmann, G. A. Truskey. The distribution of intimal white blood cells in the normal rabbit aorta. Atherosclerosis 115:147–163, 1995

    Article  CAS  PubMed  Google Scholar 

  26. Masuda H., T. Shozawa, S. Hosoda, M. Kanda, A. Kamiya. Cytoplasmic microfilaments in endothelial cells of flow loaded canine carotid arteries. Heart Vessels 1:65–69, 1985

    Article  CAS  PubMed  Google Scholar 

  27. Miao H., Y. L. Hu, Y. T. Shiu, S. Yuan, Y. Zhao, et al. Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investigations. J. Vasc. Res. 42:77–89, 2005

    Article  CAS  PubMed  Google Scholar 

  28. Nerem R. M. Hemodynamics and the vascular endothelium. J. Biomech. Eng. 115:510–514, 1993

    Article  CAS  PubMed  Google Scholar 

  29. Schwenke D. C., T. E. Carew. Quantification in vivo of increased LDL content and rate of LDL degradation in normal rabbit aorta occurring at sites susceptible to early atherosclerotic lesions. Circ. Res. 62:699–710, 1988

    CAS  PubMed  Google Scholar 

  30. Shyy J. Y., M. C. Lin, J. Han, Y. Lu, M. Petrime, S. Chien. The cis-acting phorbol ester “12-o-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc. Natl. Acad. Sci. USA 92: 8069–8073, 1995

    Article  CAS  PubMed  Google Scholar 

  31. Texon M. Hemodynamic Basis of Atherosclerosis: With Critique of the Cholesterol-heart Disease Hypothesis 2nd ed. New York: Begell House, 1995

    Google Scholar 

  32. Thoumine O., R. M. Nerem, P. R. Girard. Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells. In Vitro Cell Dev. Biol. Anim. 31:45–54, 1995

    Article  CAS  PubMed  Google Scholar 

  33. Truskey G. A., W. L. Roberts, R. A. Herrmann, R. A. Malinauskas. Measurement of endothelial permeability to 125i-low density lipoproteins in rabbit arteries by use of en face preparations. Circ. Res. 71:883–897, 1992

    CAS  PubMed  Google Scholar 

  34. Tzima E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005

    Article  CAS  PubMed  Google Scholar 

  35. Walpola P. L., A. I. Gotlieb, B. L. Langille. Monocyte adhesion and changes in endothelial cell number, morphology, and f-actin distribution elicited by low shear stress in vivo. Am. J. Pathol. 142:1392–1400, 1993

    CAS  PubMed  Google Scholar 

  36. Wang N., H. Miao, Y. S. Li, P. Zhang, J. H. Haga, et al. Shear stress regulation of Krüppel-like factor 2 expression is flow pattern-specific. Biochem. Biophys. Res. Commun. 341:1244–1251, 2006

    Article  CAS  PubMed  Google Scholar 

  37. Weinbaum S., G. Tzeghai, P. Ganatos, R. Pfeffer, S. Chien. Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am. J. Physiol. 248:H945–H960, 1985

    CAS  PubMed  Google Scholar 

  38. White G. E., M. A. Gimbrone Jr., K. Fujiwara. Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J. Cell Biol. 97:416–424, 1983

    Article  CAS  PubMed  Google Scholar 

  39. Wong A. J., T. D. Pollard, I. M. Herman. Actin filament stress fibers in vascular endothelial cells in vivo. Science 219:867–869, 1983

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y., B. P. Chen, H. Miao, S. Yuan, Y. S. Li, et al. Improved significance test for DNA microarray data: temporal effects of shear stress on endothelial genes. Physiol. Genomics 12:1–11, 2002

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants HL43026, HL80518, and HL85159 from the National Heart, Lung, and Blood Institute. The author would like to acknowledge the valuable discussions with Dr. Harry Goldsmith and his inspirations on many of the experiments on blood cell rheology and flow dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Chien.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10439-010-9931-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, S. Effects of Disturbed Flow on Endothelial Cells. Ann Biomed Eng 36, 554–562 (2008). https://doi.org/10.1007/s10439-007-9426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9426-3

Keywords

Navigation