Skip to main content
Log in

Comparison of Two Stents in Modifying Cerebral Aneurysm Hemodynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is a general lack of quantitative understanding about how specific design features of endovascular stents (struts and mesh design, porosity) affect the hemodynamics in intracranial aneurysms. To shed light on this issue, we studied two commercial high-porosity stents (Tristar stent™ and Wallstent®) in aneurysm models of varying vessel curvature as well as in a patient-specific model using Computational Fluid Dynamics. We investigated how these stents modify hemodynamic parameters such as aneurysmal inflow rate, stasis, and wall shear stress, and how such changes are related to the specific designs. We found that the flow damping effect of stents and resulting aneurysmal stasis and wall shear stress are strongly influenced by stent porosity, strut design, and mesh hole shape. We also confirmed that the damping effect is significantly reduced at higher vessel curvatures, which indicates limited usefulness of high-porosity stents as a stand-alone treatment. Finally, we showed that the stasis-inducing performance of stents in 3D geometries can be predicted from the hydraulic resistance of their flat mesh screens. From this, we propose a methodology to cost-effectively compare different stent designs before running a full 3D simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Aenis M., A. P. Stancampiano, A. K. Wakhloo, B. B. Lieber (1997) Modeling of flow in a straight stented and nonstented side wall aneurysm model. J. Biomech. Eng., 119, 206–212

    Article  PubMed  CAS  Google Scholar 

  2. Bando, K., and S. A. Berger. Research on fluid-dynamic design criterion of stent used for treatment of aneurysms by means of computational simulation. Comp. Fluid Dynam. J. 11(4):527–531, 2003

    Google Scholar 

  3. Benard N., D. Coisne, E. Donal, R. Perrault (2003) Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress. J. Biomech., 36, 991–998

    Article  PubMed  Google Scholar 

  4. Burbelko M. A., L. A. Dzyak, N. A. Zorin, S. P. Grigoruk, V. A. Golyk (2004) Stent-graft placement for wide-neck aneurysm of the vertebrobasilar junction. AJNR Am. J. Neuroradiol., 25, 608–610

    PubMed  Google Scholar 

  5. Burleson A. C., V. T. Turitto (1996) Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. On behalf of the Subcommittee on Biorheology of the Scientific and Standardization Committee of the ISTH. Thromb. Haemost., 76, 118–123

    PubMed  CAS  Google Scholar 

  6. Cebral J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, A. F. Frangi (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging, 24, 457–467

    Article  PubMed  Google Scholar 

  7. Cebral J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, C. M. Putman (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol., 26, 2550–2559

    PubMed  Google Scholar 

  8. Cebral J. R., R. Lohner (2005) Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans. Med. Imaging, 24, 468–476

    Article  PubMed  Google Scholar 

  9. Doerfler A., I. Wanke, T. Egelhof, D. Stolke, M. Forsting (2004) Double-stent method: therapeutic alternative for small wide-necked aneurysms. Technical note. J. Neurosurg., 100, 150–154

    PubMed  Google Scholar 

  10. Geremia G., M. Haklin, L. Brennecke (1994) Embolization of experimentally created aneurysms with intravascular stent devices. AJNR Am. J. Neuroradiol., 15, 1223–1231

    PubMed  CAS  Google Scholar 

  11. Gijsen F. J., D. E. Palmen, M. H. van der Beek, F. N. van de Vosse, M. E. van Dongen, J. D. Janssen (1996) Analysis of the axial flow field in stenosed carotid artery bifurcation models – LDA experiments. J. Biomech., 29, 1483–1489

    Article  PubMed  CAS  Google Scholar 

  12. Han P. P., F. C. Albuquerque, F. A. Ponce, C. I. MacKay, J. M. Zabramski, R. F. Spetzler, C. G. McDougall (2003) Percutaneous intracranial stent placement for aneurysms. J. Neurosurg. 99, 23–30

    PubMed  Google Scholar 

  13. Hashimoto, S., S. Manabe, Y. Matsumoto, I. Kazuhiro, H. Tsuji, T. Nakamura, Y. Murashige, A. Yamanaka, K. Sakaue, T. Kawamasa, S. Kaku, H. Otani, and H. Imamura. The effect of pulsatile shear flow on thrombus formation and hemolysis. In: Proceedings of the 22nd Annual WAS International Conference, July 23–28, 2000, Chicago, IL, vol. 4, 2000, pp. 2461–2463

  14. Hashimoto T., H. Meng, W. L. Young (2006) Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol. Res., 28, 372–380

    Article  PubMed  Google Scholar 

  15. Hashimoto S., K. Nishiguchi, Y. Abe, M. Nie, T. Takayana, H. Asari, S. Kazama, A. Ishihara, T. Sasada (1990) Thrombus formation under pulsatile flow: effect of periodically fluctuating shear rate. Jpn. J. Artif. Organs, 19, 1207–1210

    Google Scholar 

  16. Hoi Y., H. Meng, S. H. Woodward, B. R. Bendok, R. A. Hanel, L. R. Guterman, L. N. Hopkins (2004) Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J. Neurosurg., 101, 676–681

    PubMed  Google Scholar 

  17. Hoi Y., S. H. Woodward, M. Kim, D. B. Taulbee, H. Meng (2006) Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng., 128, 844–851

    Article  PubMed  Google Scholar 

  18. Howington J. U., R. A. Hanel, M. R. Harrigan, E. I. Levy, L. R. Guterman, L. N. Hopkins (2004) The Neuroform stent, the first microcatheter-delivered stent for use in the intracranial circulation. Neurosurgery, 54, 2–5

    Article  PubMed  Google Scholar 

  19. Idelchik, I. E. Handbook of Hydraulic Resistance. 2nd ed. Washington: Hemisphere Publishing Corporation, pp. 389–423, 1986

  20. Jabbour P., C. Koebbe, E. Veznedaroglu, R. P. Benitez, R. Rosenwasser (2004) Stent-assisted coil placement for unruptured cerebral aneurysms. Neurosurg. Focus, 17, E10

    Article  PubMed  Google Scholar 

  21. Jou L. D., G. Wong, B. Dispensa, M. T. Lawton, R. T. Higashida, W. L. Young, D. Saloner (2005) Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am. J. Neuroradiol., 26, 2357–2363

    PubMed  Google Scholar 

  22. Kim M., E. I. Levy, H. Meng, L. N. Hopkins (2007) Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm. Neurosurgery 61:1305–1312

    Article  PubMed  Google Scholar 

  23. Krings T., F. J. Hans, W. Moller-Hartmann, A. Brunn, R. Thiex, T. Schmitz-Rode, P. Verken, K. Scherer, H. Dreeskamp, K. P. Stein, J. Gilsbach, A. Thron (2005) Treatment of experimentally induced aneurysms with stents. Neurosurgery, 56, 1347–1359; discussion 1360

    Article  PubMed  Google Scholar 

  24. LaDisa J. F. Jr., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, P. S. Pagel (2003) Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng., 31, 972–980

    Article  PubMed  Google Scholar 

  25. LaDisa J. F. Jr., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, D. C. Warltier, P. S. Pagel (2004) Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol., 97, 424–430; discussion 416

    Article  PubMed  Google Scholar 

  26. LaDisa J. F. Jr., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, P. S. Pagel (2005) Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl. Physiol., 98, 947–957

    Article  PubMed  Google Scholar 

  27. LaDisa J. F. Jr., L. E. Olson, R. C. Molthen, D. A. Hettrick, P. F. Pratt, M. D. Hardel, J. R. Kersten, D. C. Warltier, P. S. Pagel (2005) Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am. J. Physiol. Heart Circ. Physiol., 288, H2465–2475

    Article  PubMed  CAS  Google Scholar 

  28. Lanzino G., A. K. Wakhloo, R. D. Fessler, M. L. Hartney, L. R. Guterman, L. N. Hopkins (1999) Efficacy and current limitations of intravascular stents for intracranial internal carotid, vertebral, and basilar artery aneurysms. J. Neurosurg., 91, 538–546

    Article  PubMed  CAS  Google Scholar 

  29. Lieber B. B., V. Livescu, L. N. Hopkins, A. K. Wakhloo (2002) Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow. Ann. Biomed. Eng., 30, 768–777

    Article  PubMed  Google Scholar 

  30. Lieber B. B., A. P. Stancampiano, A. K. Wakhloo (1997) Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity. Ann. Biomed. Eng., 25, 460–469

    Article  PubMed  CAS  Google Scholar 

  31. Liepsch D. W. (1986) Flow in tubes and arteries – a comparison. Biorheology, 23, 395–433

    PubMed  CAS  Google Scholar 

  32. Liffman K., M. M. Lawrence-Brown, J. B. Semmens, A. Bui, M. Rudman, D. E. Hartley (2001) Analytical modeling and numerical simulation of forces in an endoluminal graft. J. Endovasc. Ther., 8, 358–371

    Article  PubMed  CAS  Google Scholar 

  33. Liou T. M., S. N. Liou (2004) Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel. Exp. Mech. 44, 253–260

    Article  Google Scholar 

  34. Liou T. M., S. N. Liou, K. L. Chu (2004) Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. J. Biomech. Eng., 126, 36–43

    Article  PubMed  Google Scholar 

  35. Lylyk P., J. E. Cohen, R. Ceratto, A. Ferrario, C. Miranda (2002) Endovascular reconstruction of intracranial arteries by stent placement and combined techniques. J. Neurosurg., 97, 1306–1313

    PubMed  Google Scholar 

  36. Malek A. M., S. L. Alper, S. Izumo (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA, 282, 2035–2042

    Article  PubMed  CAS  Google Scholar 

  37. Meng H., D. D. Swartz, Z. J. Wang, Y. Hoi, J. Kolega, E. Metaxa, M. P. Szymanski, J. Yamamoto, E. Sauvageau, E. I. Levy (2006) A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery, 59, 1094–1101

    Article  PubMed  Google Scholar 

  38. Meng H., Z. Wang, M. Kim, R. D. Ecker, L. N. Hopkins (2006) Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting. AJNR Am. J. Neuroradiol. 27:1861–1865

    PubMed  CAS  Google Scholar 

  39. Perktold K., T. Kenner, D. Hilbert, B. Spork, H. Florian (1988) Numerical blood flow analysis: arterial bifurcation with a saccular aneurysm. Basic Res. Cardiol., 83, 24–31

    Article  PubMed  CAS  Google Scholar 

  40. Perktold K., R. Peter, M. Resch (1989) Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology, 26, 1011–1030

    PubMed  CAS  Google Scholar 

  41. Rudin S., Z. Wang, I. Kyprianou, K. R. Hoffmann, Y. Wu, H. Meng, L. R. Guterman, B. Nemes, D. R. Bednarek, J. Dmochowski, L. N. Hopkins (2004) Measurement of flow modification in phantom aneurysm model: comparison of coils and a longitudinally and axially asymmetric stent – initial findings. Radiology 231, 272–276

    Article  PubMed  Google Scholar 

  42. Shojima M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, T. Kirino (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke, 35, 2500–2505

    Article  PubMed  Google Scholar 

  43. Steinman D. A. (2002) Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng., 30, 483–497

    Article  PubMed  Google Scholar 

  44. Stuhne G. R., D. A. Steinman (2004) Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng., 126, 382–387

    Article  PubMed  Google Scholar 

  45. Valencia A. (2005) Simulation of unsteady laminar flow in models of terminal aneurysm of the basilar artery. Int. J. Comput. Fluid Dyn. 19, 337–345

    Article  Google Scholar 

  46. Vanninen R., H. Manninen, A. Ronkainen (2003) Broad-based intracranial aneurysms: thrombosis induced by stent placement. AJNR Am. J. Neuroradiol., 24, 263–266

    PubMed  Google Scholar 

  47. Wakhloo A. K., G. Lanzino, B. B. Lieber, L. N. Hopkins (1998) Stents for intracranial aneurysms: the beginning of a new endovascular era? Neurosurgery, 43, 377–379

    Article  PubMed  CAS  Google Scholar 

  48. Yu S. C., J. B. Zhao (1999) A steady flow analysis on the sented and non-stented sidewall aneurysm models. Med. Eng. Phys. 21, 133–141

    Article  PubMed  CAS  Google Scholar 

  49. Zarins C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, S. Glagov (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res., 53, 502–514

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation under Grant BES-0302389 and the National Institute of Health under Grants NS047242, EB002873, and NS043924. We gratefully acknowledge Kenneth R. Hoffmann for providing software for the patient angiographic geometry reconstruction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Taulbee, D., Tremmel, M. et al. Comparison of Two Stents in Modifying Cerebral Aneurysm Hemodynamics. Ann Biomed Eng 36, 726–741 (2008). https://doi.org/10.1007/s10439-008-9449-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9449-4

Keywords

Navigation