Skip to main content
Log in

Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To investigate whether or not a successful aneurysm treatment procedure can subject a parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. Prior to treatment, the aneurysm at systole is filled with a periodic train of vortex tubes, which form at the aneurysm neck and advect upwards into the dome. Following the treatment procedure however, the motion of the vortex train is inhibited by the aneurysm filling material, which confines the vortex tubes to the region beneath the aneurysm neck. Analysis of the post-treatment flow field indicates that the impingement of the basilar artery flow upon the treated aneurysm neck and the close proximity of a vortex tube to the parent artery wall increase the maximum wall shear stresses to values approximately equal to 50 Pa at systole. Calculation of the time-averaged wall shear stresses indicates that there is a 1.4 × 10−7 m2 area on the parent artery exposed to wall shear stresses greater than 37.9 Pa, a value shown by Fry [Circ. Res. 22(2):165–197, 1968] to cause severe damage to the endothelial cells that line the artery wall. The results of this study demonstrate that it is possible for a treatment procedure, which successfully isolates the aneurysm from the circulation and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the artery wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

BA:

Basilar artery

CFD:

Computational fluid dynamics

CTA:

Computed tomography angiography

GDC:

Guglielmi detachable coil

PCA:

Posterior cerebral artery

SAH:

Subarachnoid hemorrhage

SCA:

Superior cerebellar artery

SMP:

Shape memory polymer

WSS:

Wall shear stress

WSSG:

Wall shear stress gradient

References

  1. Amin-Hanjani, S., X. Du, M. Zhao, K. Walsh, T. W. Malisch, and F. T. Charbel. Use of quantitative magnetic resonance angiography to stratify stroke risk in symptomatic vertebrobasilar disease. Stroke 1140–1145, 2005. http://stroke.ahajournals.org/cgi/content/full/36/6/1140.

  2. Ballyk P.D., Steinman D.A., Ethier C.R. (1994) Simulation of non-Newtonian blood flow in an end-to-end anastomosis. Biorheology 31(5):565–586

    PubMed  CAS  Google Scholar 

  3. Bavinzski G., Talazoglu V., Killer M. et al. (1999) Gross and microscopic histopathological findings in aneurysms of the human brain treated with Guglielmi detachable coils. J Neurosurg 91:284–93

    PubMed  CAS  Google Scholar 

  4. Blackburn H.M., Mansour N.N., Cantwell B.J. (1996) Topology of fine-scale motions in a turbulent channel. J Fluid Mech 310:269–292

    Article  CAS  Google Scholar 

  5. Byun H.S., Rhee K. (2004) CFD modeling of blood flow following coil embolization of aneurysms. Med Eng & Phys 26:755–761

    Article  PubMed  Google Scholar 

  6. Carlotti C.G. Jr, Martelli N., Assirati J.A. Jr., Machado H.R., Santos A.C., Colli B.O. (1996) Subarachnoid hemorrhage after aneurysm surgery. Arq Neuropsiquiatr 54:181–189

    PubMed  Google Scholar 

  7. Cebral J.R., Löhner R. (2005) Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans Med Imag 24(4):468–476

    Article  Google Scholar 

  8. Cha K.S., Balaras E., Lieber B.B., Sadasivan C., Wakhloo A.K. (2007) Modeling the interaction of coils with the local blood flow after coil embolization of intracranial aneurysms. J Biomech Eng 129:873–879

    Article  PubMed  Google Scholar 

  9. Cho Y.I., Kensey K.R. (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 28:241–262

    PubMed  CAS  Google Scholar 

  10. Cognard C., Weill A., Spelle L. et al. (1999) Long-term angiographic follow-up of 169 intracranial berry aneurysms occluded with detachable coils. Radiology 212(2):348–356

    PubMed  CAS  Google Scholar 

  11. Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19(6):067105–067105-17, 2007.

    Google Scholar 

  12. David A.D., Vishten A.G., Spetzler R.F., Lemole M., Lawton M.T., Partovi S. (1999) Late angiographic follow-up review of surgically treated aneurysms. J Neurosurg 91:396–401

    PubMed  CAS  Google Scholar 

  13. DePaola N., Gimbrone M.A. Jr., Davies P.F., Dewey C.F. Jr. (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb 12(11):1254–1257

    PubMed  CAS  Google Scholar 

  14. Deplano V., Knapp Y., Bertrand E., Gaillard E. (2007) Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm. J Biomech 40:2406–2413

    Article  PubMed  Google Scholar 

  15. Deshpande M.D., Vaishnav R.N. (1982) Submerged laminar jet impingement on a plane. J Fluid Mech 114:213–236

    Article  Google Scholar 

  16. Dewey, C. F. Jr. Fluid mechanics of arterial flow. In: Dynamics of Arterial Flows, edited by S. Wolf and N. T. Werthessen, Advances in Experimental Medicine and Biology, Vol. 115. Plenum Press, 1979, pp. 55–103.

  17. Drake C.G., Friedman A.H., Peerless S.J. (1984) Failed aneurysm surgery: reoperation in 115 cases. J Neurosurg 61:848–856

    PubMed  CAS  Google Scholar 

  18. Duncan D.D. et al. (1990) The effect of compliance on wall shear in casts of a human aortic bifurcation. J Biomech Eng 112:183–188

    Article  PubMed  CAS  Google Scholar 

  19. Enzmann D.R., Ross M.R., Marks M.P., Pelc N.J. (1994) Blood flow in major cerebral arteries measured by phase-contrast cine MR. AJNR 15(1):123–9

    PubMed  CAS  Google Scholar 

  20. Ferguson G.G. (1970) Turbulence in human intracranial saccular aneurysms. J Neurosurg 33:485–497

    PubMed  CAS  Google Scholar 

  21. Fry D.L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22(2):165–97

    PubMed  CAS  Google Scholar 

  22. Girerd X., London G., Boutouyrie P., Mourad J.J., Safar M., Laurent S. (1996) Remodeling of the radial artery in response to a chronic increase in shear stress. Hypertension 27:799–803

    PubMed  CAS  Google Scholar 

  23. Groden C., Laudan J., Gatchell S., Zeumer H. (2001) Three-dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm. Journal of Cerebral Blood Flow & Metabolism 21:1464–1471

    CAS  Google Scholar 

  24. Hassan T., Timofeev E.V., Saito T., Shimizu H., Ezura M., Tominaga T., Takahashi A., Takayama K. (2004) Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography. AJNR 25:1356–1365

    PubMed  Google Scholar 

  25. He X., Ku D.N. (1994) Unsteady entrance flow development in a straight tube. J Biomech Eng 116:355–360

    Article  PubMed  CAS  Google Scholar 

  26. Horowitz M., Samson D., Purdy P. (1997) Does electrothrombosis occur immediately after embolization of an aneurysm with Guglielmi detachable coils?. AJNR 18:510–513

    PubMed  CAS  Google Scholar 

  27. Issa R.I. (1986) Solution of the implicitly discretized fluid-flow equations by operator-splitting. J Comp Phys 62(1):40–65

    Article  Google Scholar 

  28. Joris I., Zand T., Majno G. (1982) Hydrodynamic injury of the endothelium in acute aortic-stenosis. American Journal of Pathology 106(3):394–408

    PubMed  CAS  Google Scholar 

  29. Kallmes D.F., Williams A.D., Cloft H.J., Lopez M.B.S., Hankins G.R., Helm G.A. (1998) Platinum coil-mediated implantation of growth factor-secreting endovascular tissue grafts: an in vivo study. Radiology 207:519–523

    PubMed  CAS  Google Scholar 

  30. Kamiya A., Togawa T. (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol Heart Circ Physiol 239:H14–H21

    CAS  Google Scholar 

  31. Kang H.-S., Han M.H., Kwon B.J., Kwon O.-K., Kim S.H. (2006) Repeat endovascular treatment in postembolization recurrent intracranial aneurysms. Neurosurgery 58:60–70

    Article  PubMed  Google Scholar 

  32. Kato T., Indo T., Yoshida E. et al. (2002) Contrast-enhanced 2D cine phase MR angiography for measurement of basilar artery blood flow in posterior circulation ischemia. AJNR 23:1346–1351

    PubMed  Google Scholar 

  33. Kim M., Levy E.I., Meng H., Hopkins L.N. (2007) Quantification of hemodynamic changes induced by virtual placement of multiple stents across wide-necked basilar trunk aneurysm. Neurosurgery 61:1305–1313

    Article  PubMed  Google Scholar 

  34. Kundu, P. K. Fluid Mechanics. Academic Press, 1990.

  35. Lin T., Fox A.J., Drake C.G. (1989) Regrowth of aneurysm sacs from residual neck following aneurysm clipping. J Neurosurg 70(4):556–560

    PubMed  CAS  Google Scholar 

  36. Maitland D.J., Small IV W., Ortega J.M., Buckley P.R., Rodriguez J., Hartman J., Wilson T.S. (2007) Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms. J Biomed Opt 12(3):030504

    Article  PubMed  Google Scholar 

  37. Meng H., Wang Z., Hoi Y., Gao L., Metaxa E., Swartz D.D., Kolega J. (2007) Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38:1924–1931

    Article  PubMed  Google Scholar 

  38. Mitsos A.P., Kakalis N.M.P., Ventikos Y.P., Byrne J.V. (2008) Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note. Neuroradiology 50(4):341–347

    Article  PubMed  Google Scholar 

  39. Murayama Y. et al. (1999) Development of the biologically active Guglielmi detachable coil for the treatment of cerebral aneurysms. Part II: An experimental study in a swine aneurysm model. AJNR 20:1992–1999

    PubMed  CAS  Google Scholar 

  40. Murayama Y., Tateshima S., Gonzalez N.R., Viñuela F. (2003) Matrix and bioabsorbable polymeric coils accelerate healing of intracranial aneurysms. Stroke 34:2031–2037

    Article  PubMed  Google Scholar 

  41. Perry A.E., Chong M.S. (1994) Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53:357–374

    Article  Google Scholar 

  42. Phares D.J., Smedley G.T., Flagan R.C. (2000) The wall shear stress produced by the normal impingement of a jet upon a flat surface. J Fluid Mech 418:351–375

    Article  Google Scholar 

  43. Ruge, J. W. and K. Stüben. Algebraic Multigrid (AMG). In: Multigrid Methods, edited by S. McCormick, Frontiers in Applied Mathematics, Vol. 5. Philadelphia: SIAM, 1986.

  44. Sahs A.L. (1966) Observations on the pathology of saccular aneurysms. J Neurosurg 24(4):792–806

    Article  PubMed  CAS  Google Scholar 

  45. Sherwin S.J., Blackburn H.M. (2005) Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J Fluid Mech 533:297–327

    Article  Google Scholar 

  46. Soria J., Sondergaard R., Cantwell B.J., Chong M.S., Perry A.E. (1994) A study of the fine-scale motions of incompressible time-developing mixing layers. Phys Fluids 6(2):871–884

    Article  Google Scholar 

  47. STAR-CD, v3.24, v3.26, v4.0, CD-Adapco Group, www.cd-adapco.com.

  48. Steiger H.J., Poll A., Licpsch D., Reulen H.-J. (1987) Haemodynamic stress in lateral saccular aneurysms. Acta Neurochirurgica 86:98–105

    Article  PubMed  CAS  Google Scholar 

  49. Stiver S.I., Porter P.J., Willinsky R.A., Wallace M.C. (1998) Acute human histopathology of an intracranial aneurysm treated using Guglielmi detachable coils: case report and review of the literature. Neurosurgery 43(5):1203–1207

    Article  PubMed  CAS  Google Scholar 

  50. Szikora I. et al. (2006) Histopathologic evaluation of aneurysms treated with Guglielmi detachable coils or Matrix detachable microcoils. AJNR 27:283–288

    PubMed  CAS  Google Scholar 

  51. Thornton J., Bashir Q., Aletich V.A., Debrun G.M., Ausman J.I., Charbel F.T. (2000) What percentage of surgically clipped intracranial aneurysms have residual necks?. Neurosurgery 46(6):1294–1300

    Article  PubMed  CAS  Google Scholar 

  52. Tsutsumi K., Ueki K., Morita A., Usui M., Kirino T. (2001) Risk of aneurysm recurrence in patients with clipped cerebral aneurysms: results of long-term follow-up angiography. Stroke 32:1191–1194

    PubMed  CAS  Google Scholar 

  53. Vaishnav R.N., Patel D.J., Atabek H.B., Deshpande M.D., Plowman F., Vossoughi J. (1983) Determination of the local erosion stress of the canine endothelium using a jet impingement method. J Biomech Eng 105(1):77–83

    PubMed  CAS  Google Scholar 

  54. Valencia A.A., Guzmán A.M., Finol E.A., Amon C.H. (2006) Blood flow dynamics in saccular aneurysm models of the basilar artery. J Biomech Eng 128:516–526

    Article  PubMed  Google Scholar 

  55. Walker J.D.A. (1978) The boundary layer due to a rectilinear vortex. Proc R Soc Lond A 359:167–188

    Google Scholar 

  56. Weinbaum S., Chien S. (1993) Lipid transport aspects of atherogenesis. J Biomech Eng 115(4B):602–610

    Article  PubMed  CAS  Google Scholar 

  57. Wermer M.J., Rinkel G.J., Greebe P., Albrecht K.W., Dirven C.M., Tulleken C.A. (2005) Late recurrence of subarachnoid hemorrhage after treatment for ruptured aneurysms: patient characteristics and outcomes. Neurosurgery 56(2):197–204

    Article  PubMed  Google Scholar 

  58. Womersley J.R. (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    PubMed  CAS  Google Scholar 

  59. Zeeman G.G., Hatab M.R., Twickler D.M. (2004) Increased cerebral blood flow in preeclampsia with magnetic resonance imaging. American Journal of Obstetrics and Gynecology 191:1425–1429

    Article  PubMed  Google Scholar 

  60. Zhao S.Z. et al. (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 33:975–984

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank K. Salari for his guidance with the CFD simulations, J. Paschkewitz for his discussions on the probability statistics of the velocity gradient tensor, and W. Small for his feedback in the manuscript preparation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Major support was provided by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering, Grant R01EB000462. Additional support was provided by a LLNL Directed Research and Development Grant (04-ERD-093). LLNL-JRNL-400737.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ortega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, J., Hartman, J., Rodriguez, J. et al. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation. Ann Biomed Eng 36, 1531–1546 (2008). https://doi.org/10.1007/s10439-008-9535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9535-7

Keywords

Navigation