Skip to main content
Log in

Modeling of the Acute Effects of Primary Hypertension and Hypotension on the Hemodynamics of Intracranial Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hemodynamics is a risk factor in intracranial aneurysms (IA). Hypertension and pharmacologically induced hypotension are common in IA patients. This study investigates how hypertension and hypotension may influence aneurysmal hemodynamics. Images of 23 IAs at typical locations were used to build patient-specific Computational Fluid Dynamics models. The effects of hypotension and hypertension were simulated through boundary conditions by modulating the normotensive flow and pressure waveforms, in turn produced by a 1D systemic vascular model. Aneurysm location and flow pattern types were used to categorize the influence of hypotension and hypertension on relevant flow variables (velocity, pressure and wall shear stress). Results indicate that, compared to other locations, vertebrobasilar aneurysms (VBA) are more sensitive to flow changes. In VBAs, space-averaged velocity at peak systole increased by 30% in hypertension (16–21% in other locations). Flow in VBAs in hypotension decreased by 20% (10–13% in other locations). Momentum-driven hemodynamic types were also more affected by hypotension and hypertension, than shear-driven types. This study shows how patient-specific modeling can be effectively used to identify location-specific flow patterns in a clinically-relevant study, thus reinforcing the role played by modeling technologies in furthering our understanding of cardiovascular disease, and their potential in future healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

IA:

Intracranial aneurysm

CFD:

Computational fluid dynamics

3DRA:

Three-dimensional rotational angiography

ICA:

Internal carotid artery

MCA:

Middle cerebral artery

PCOM:

Posterior communicating artery

VBA:

Vertebrobasilar artery

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

MD:

Momentum-driven

SD:

Shear-driven

MV:

Maximum velocity at peak systole

SavV:

Space-averaged velocity at peak systole

MTavV:

Maximum time-averaged velocity

TavV:

Time-averaged velocity

STavV:

Space-and-time-averaged velocity

WSS:

Wall shear stress

TavWSS:

Time-averaged wall shear stress

STavWSS:

Space-and-time-averaged wall shear stress

References

  1. Bijlenga, P., and @neurIST investigators. Risk of rupture of small anterior communicating artery aneurysms is similar to posterior circulation aneurysms. Stroke 44:3018–3026, 2013.

    Article  PubMed  Google Scholar 

  2. Bonert, M., J. G. Myers, S. Fremes, J. Williams, and C. R. Ethier. A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses. Ann. Biomed. Eng. 30:599–611, 2002.

    Article  PubMed  Google Scholar 

  3. Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bowker, T. J., P. N. Watton, P. E. Summers, J. V. Byrne, and Y. Ventikos. Rest versus exercise hemodynamics for middle cerebral artery aneurysms: a computational study. AJNR Am. J. Neuroradiol. 31:317–323, 2010.

    Article  CAS  PubMed  Google Scholar 

  5. Cebral, J. R., and H. Meng. Counterpoint: realizing the clinical utility of computational fluid dynamics—closing the gap. AJNR. Am. J. Neuroradiol. 33:396–398, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Cebral, J. R., F. Mut, J. Weir, and C. Putman. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am. J. Neuroradiol. 32:145–151, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 32:264–270, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dempere-Marco, L., E. Oubel, M. Castro, C. Putman, A. Frangi, and J. Cebral. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. Med. Image Comput. Comput. Assist. Interv. 9:438–445, 2006.

    PubMed  Google Scholar 

  9. Ghods, A. J., D. Lopes, and M. Chen. Gender differences in cerebral aneurysm location. Front. Neurol. 3:78, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Humphrey, J., and S. Na. Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30:509–523, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jou, L.-D., D. H. Lee, H. Morsi, and M. E. Mawad. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am. J. Neuroradiol. 29:1761–1767, 2008.

    Article  PubMed  Google Scholar 

  13. Lam, A. M., and A. W. Gelb. Cardiovascular effects of isoflurane-induced hypotension for cerebral aneurysm surgery. Anesth. Analg. 62:742–748, 1983.

    Article  CAS  PubMed  Google Scholar 

  14. Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38:1288–1313, 2010.

    Article  PubMed  Google Scholar 

  15. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Meng, H., V. M. Tutino, J. Xiang, and A. Siddiqui. High WSS or Low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am. J. Neuroradiol. 35:1254–1262, 2014.

  17. Mitchell, P., A. Gholkar, R. R. Vindlacheruvu, and A. David Mendelow. Unruptured intracranial aneurysms: benign curiosity or ticking bomb? Lancet Neurol. 3:85–92, 2004.

    Article  PubMed  Google Scholar 

  18. Nixon, A. M., M. Gunel, and B. E. Sumpio. The critical role of hemodynamics in the development of cerebral vascular disease: a review. J. Neurosurg. 112:1240–1253, 2010.

    Article  PubMed  Google Scholar 

  19. Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:H208–H222, 2009.

    Article  CAS  PubMed  Google Scholar 

  20. Rinkel, G. J. E., M. Djibuti, M. Djibuti, A. Algra, and J. van Gijn. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–256, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Sforza, D. M., C. M. Putman, and J. R. Cebral. Hemodynamics of cerebral aneurysms. Annu. Rev. Fluid Mech. 41:91–107, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505, 2004.

    Article  PubMed  Google Scholar 

  23. Singh, P. K., A. Marzo, B. Howard, D. A. Rufenacht, P. Bijlenga, A. F. Frangi, P. V. Lawford, D. R. Hose, and U. J. Patel. Effects of smoking and hypertension on wall shear stress and oscillatory shear index at the site of intracranial aneurysm formation. Clin. Neurol. Neurosurg. 112:306–313, 2010.

    Article  PubMed  Google Scholar 

  24. Slosberg, P. S. Symptomatic unruptured giant aneurysms: medical treatment. Acta Neurochir. (Wien) 62:207–218, 1982.

    Article  CAS  Google Scholar 

  25. Slosberg, P. S. Unexpected results in long-term medically treated ruptured intracranial aneurysm including data on 14 patients followed more than 30 years each. Acta Neurochir. (Wien) 139:697–705, 1997.

    Article  CAS  Google Scholar 

  26. Suh, G.-Y., A. S. Les, A. S. Tenforde, S. C. Shadden, R. L. Spilker, J. J. Yeung, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Hemodynamic changes quantified in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Eng. 39:2186–2202, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Villa-Uriol, M. C., G. Berti, D. R. Hose, A. Marzo, A. Chiarini, J. Penrose, J. Pozo, J. G. Schmidt, P. Singh, R. Lycett, I. Larrabide, and A. F. Frangi. @neurIST complex information processing toolchain for the integrated management of cerebral aneurysms. Interface Focus 1:308–319, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wu, J., A. T. Kraja, A. Oberman, C. E. Lewis, R. C. Ellison, D. K. Arnett, G. Heiss, J.-M. Lalouel, S. T. Turner, S. C. Hunt, Ma Province, and D. C. Rao. A summary of the effects of antihypertensive medications on measured blood pressure. Am. J. Hypertens. 18:935–942, 2005.

    Article  CAS  PubMed  Google Scholar 

  29. Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic—morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Sixth (FP6/2002-2006) and Seventh Framework Programme (FP7/2007–2013) under grant agreements  no. FP6-IST- 027703 (@neurIST), no. FP7-ICT-601055 (VPH-DARE@IT), and no. FP7-ICT-69978 (VPH-Share). The authors would also like to acknowledge the computational support provided by the Department of Chemical Engineering, Isfahan University of Technology (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Cruz Villa-Uriol.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarrami-Foroushani, A., Villa-Uriol, MC., Nasr Esfahany, M. et al. Modeling of the Acute Effects of Primary Hypertension and Hypotension on the Hemodynamics of Intracranial Aneurysms. Ann Biomed Eng 43, 207–221 (2015). https://doi.org/10.1007/s10439-014-1076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1076-7

Keywords

Navigation