Skip to main content
Log in

Three-dimensional reconstruction of tumor microvasculature: Simultaneous visualization of multiple components in paraffin-embedded tissue

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) visualization of microscopic structures may provide useful information about the exact 3D configuration, and offers a useful tool to examine the spatial relationship between different components in tissues. A promising field for 3D investigation is the microvascular architecture in normal and pathological tissue, especially because pathological angiogenesis plays a key role in tumor growth and metastasis formation. This paper describes an improved method for 3D reconstruction of microvessels and other microscopic structures in transmitted light microscopy. Serial tissue sections were stained for the endothelial marker CD34 to highlight microvessels and corresponding images were selected and aligned. Alignment of stored images was further improved by automated non-rigid image registration, and automated segmentation of microvessels was performed. Using this technique, 3D reconstructions were produced of the vasculature of the normal brain. Also, to illustrate the complexity of tumor vasculature, 3D reconstructions of two brain tumors were performed: a hemangioblastoma and a glioblastoma multiforme. The possibility of multiple component visualization was shown in a 3D reconstruction of endothelium and pericytes of normal cerebellar cortex and a hemangioblastoma using alternate staining for CD34 and α-smooth muscle actin in serial sections, and of a GBM using immunohistochemical double staining. In conclusion, the described 3D reconstruction procedure provides a promising tool for simultaneous visualization of microscopic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GBM:

glioblastoma multiforme

MVP:

microvascular proliferation

References

  1. Salisbury JR. (1994). Three-dimensional reconstruction in microscopical morphology. Histol Histopathol 9:773–80

    PubMed  CAS  Google Scholar 

  2. Malkusch W, Konerding MA, Klapthor B et al. (1995). A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization. Anal Cell Pathol 9:69–81

    PubMed  CAS  Google Scholar 

  3. Foreman DM, Bagley S, Moore J et al. (1996). Three- dimensional analysis of the retinal vasculature using immunofluorescent staining and confocal laser scanning microscopy. Br J Ophthalmol 80:246–51

    Article  PubMed  CAS  Google Scholar 

  4. Kay PA, Robb RA, Bostwick DG. (1998). Prostate cancer microvessels: a novel method for three-dimensional reconstruction and analysis. Prostate 37:270–7

    Article  PubMed  CAS  Google Scholar 

  5. Duerstock BS, Bajaj CL, Pascucci V et al. (2000). Advances in three-dimensional reconstruction of the experimental spinal cord injury. Comput Med Imaging Graph 24:389–406

    Article  PubMed  CAS  Google Scholar 

  6. Antiga L, Ene-Iordache B, Remuzzi G et al. (2001). Automatic generation of glomerular capillary topological organization. Microvasc Res 62:346–54

    Article  PubMed  CAS  Google Scholar 

  7. Brey EM, KingTW, Johnston C et al. (2002). A technique for quantitative three-dimensional analysis of microvascular structure. Microvasc Res 63:279–94

    Article  PubMed  Google Scholar 

  8. Ohtake T, Albe R, Kimijima I et al. (1995). Intraductal extension of primary invasive breast carcinoma treated by breast-conservative surgery. Computer graphic three-dimensional reconstruction of the mammary duct-lobular systems. Cancer 76:32–45

    Article  PubMed  CAS  Google Scholar 

  9. Perez-Atayde AR, Sallan SE, Tedrow U et al. (1997). Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukaemia. Am J Pathol 150:815–21

    PubMed  CAS  Google Scholar 

  10. Salisbury JR, Deverell MH, Seaton JM et al. (1997). Three-dimensional reconstruction of non-Hodgkin’s lymphoma in bone marrow trephines. J Pathol 181:451–4

    Article  PubMed  CAS  Google Scholar 

  11. Carmeliet P, Jain RK. (2000). Angiogenesis in cancer and other diseases. Nature 407:249–57

    Article  PubMed  CAS  Google Scholar 

  12. Weidner N. (1995). Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147:9–19

    PubMed  CAS  Google Scholar 

  13. Konerding MA, Malkusch W, Klapthor B, et al. (1999). Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 80:724–32

    Article  PubMed  CAS  Google Scholar 

  14. Hossler FE, Douglas JE. (2001). Vascular corrosion casting: review of advantages and limitations in the application of some simple quantitative methods. Microsc Microanal 7:253–64

    Article  PubMed  CAS  Google Scholar 

  15. Wesseling P, Schlingemann RO, Rietveld FJ et al. (1995). Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol 54:304–10

    Article  PubMed  CAS  Google Scholar 

  16. Serra J. (1982). Image analysis and mathematical morphology. Academic Press, London

    Google Scholar 

  17. Kleihues P, Cavenee WK. (2000). Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, pp. 223–226

    Google Scholar 

  18. Kleihues P, Cavenee WK. (2000). Pathology and genetics of tumours of the nervous system. IARC Press, Lyon, pp.29–39

    Google Scholar 

  19. Wesseling P, van der Laak JAWM, Link M et al. (1998). Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 29:352–8

    Article  PubMed  CAS  Google Scholar 

  20. Weninger WJ, Mohun, T. (2002). Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat Gen 30:59–65

    Article  CAS  Google Scholar 

  21. Rydmark M, Jansson T, Berthold CH et al. (1992). Computer-assisted realignment of light micrograph images from consecutive section series of cat cerebral cortex. J Microsc 165:29–47

    CAS  Google Scholar 

  22. Ozerdem U and Stallcup WB. (2003). Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6:241–9

    Article  PubMed  CAS  Google Scholar 

  23. Sims DE. (2000). Diversity within pericytes. Clin Exp Pharmacol Physiol 27:842–6

    Article  PubMed  CAS  Google Scholar 

  24. Eberhard A, Kahlert S, Goede V et al. (2000). Heterogeneity of angiogenesis and blood vessel maturation in human tumours: implications for antiangiogenic tumour therapies. Cancer Res 60:1388–93

    PubMed  CAS  Google Scholar 

  25. Ho KL. (1985). Ultrastructure of cerebellar capillary hemangioblastoma. IV. Pericytes and their relationship to endothelial cells. Acta Neuropathol (Berl) 67:254–64

    Article  CAS  Google Scholar 

  26. Furusato M, Wakui S, Suzuki M et al. (1990). Three-dimensional ultrastructural distribution of cytoplasmic interdigitation between endothelium and pericyte of capillary in human granulation tissue by serial section reconstruction method. J Electron Microsc 39:86–91

    CAS  Google Scholar 

  27. Bernsen HJ, Rijken PF, Peters H et al. (2000). Hypoxia in a human intracerebral glioma model. J Neurosurg 93:449–54

    Article  PubMed  CAS  Google Scholar 

  28. Kusters B, Leenders WP, Wesseling P et al. (2002). Vascular endothelial growth factor-A (165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62:341–45

    PubMed  CAS  Google Scholar 

  29. Leenders WP, Kusters B, Verrijp K et al. (2004). Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10:6222–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work has been supported by a grant from the Dutch Cancer Society (KUN2003–2975) to Dr Wesseling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. M. Gijtenbeek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gijtenbeek, J.M.M., Wesseling, P., Maass, C. et al. Three-dimensional reconstruction of tumor microvasculature: Simultaneous visualization of multiple components in paraffin-embedded tissue. Angiogenesis 8, 297–305 (2006). https://doi.org/10.1007/s10456-005-9019-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9019-4

Keywords

Navigation