Skip to main content

Advertisement

Log in

Altered functional connectivity of the default mode network in diffuse gliomas measured with pseudo-resting state fMRI

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The purpose of the current study was to explore whether brain tumors disrupt the integrity of the default mode network (DMN), a well-characterized resting-state fMRI network. We evaluated whether tumor grade, volume, post-surgical/clinical status, or location decreased the functional connectivity within the DMN in patients with gliomas. Task-based fMRI data was obtained from 68 diffuse glioma patients and 12 healthy volunteers. Pseudo-resting state fMRI data was calculated from task-based fMRI data using standard techniques. Data was preprocessed and DMN integrity was compared across WHO grade, tumor volume surgical status (new vs. recurrent tumors), age, and KPS using univariate and multivariate linear models. WHO grade was the most significant predictor of DMN integrity (P = 0.004), whereas T2 hyperintense lesion volume was not a predictor (P = 0.154). DMN integrity was lower in high-grade (WHO III–IV) compared with low-grade (WHO II) patients (P = 0.020). Tumors in the left parietal lobe showed a more impaired DMN compared with tumors in the frontal lobe, while tumors within and outside the network nodes did not differ significantly. Results suggest higher tumor grade along with prior surgery and/or treatment cause the largest reduction in DMN functional connectivity in patients with primary gliomas, and that tumor location has an impact on connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  2. Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114:443–458

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ennis BW, Matrisian LM (1994) Matrix degrading metalloproteinases. J Neurooncol 18:105–109

    Article  CAS  PubMed  Google Scholar 

  4. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    Article  CAS  PubMed  Google Scholar 

  5. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    Article  CAS  PubMed  Google Scholar 

  6. Bellec P, Perlbarg V, Jbabdi S, Pelegrini-Issac M, Anton JL, Doyon J, Benali H (2006) Identification of large-scale networks in the brain using fMRI. Neuroimage 29:1231–1243

    Article  PubMed  Google Scholar 

  7. Chen S, Ross TJ, Zhan W, Myers CS, Chuang KS, Heishman SJ, Stein EA, Yang Y (2008) Group independent component analysis reveals consistent resting-state networks across multiple sessions. Brain Res 1239:141–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Otti A, Gundel H, Wohlschlager A, Zimmer C, Sorg C, Noll-Hussong M (2012) Default mode network of the brain. Neurobiology and clinical significance. Nervenarzt 83(16):18–24

    Google Scholar 

  9. Zhu DC, Majumdar S, Korolev IO, Berger KL, Bozoki AC (2013) Alzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: a multi-modal imaging study. J Alzheimers Dis 34:969–984

    CAS  PubMed  Google Scholar 

  10. Waltz JA, Kasanova Z, Ross TJ, Salmeron BJ, McMahon RP, Gold JM, Stein EA (2013) The roles of reward, default, and executive control networks in set-shifting impairments in schizophrenia. PLoS ONE 8:e57257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Filippi M, Agosta F, Scola E, Canu E, Magnani G, Marcone A, Valsasina P, Caso F, Copetti M, Comi G, Cappa SF, Falini A (2012) Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 49(9):2389–2401

    Article  PubMed  Google Scholar 

  12. Rogers BP, Morgan VL, Newton AT, Gore JC (2007) Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging 25:1347–1357

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger KK, Fox MD, Snyder AZ, Raichle ME, Petersen SE (2007) A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. Neuroimage 35:396–405

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fox MD, Snyder AZ, Zacks JM, Raichle ME (2006) Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 9:23–25

    Article  CAS  PubMed  Google Scholar 

  15. Arfanakis K, Cordes D, Haughton VM, Moritz CH, Quigley MA, Meyerand ME (2000) Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. Magn Reson Imaging 18:921–930

    Article  CAS  PubMed  Google Scholar 

  16. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  17. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  18. Franco AR, Pritchard A, Calhoun VD, Mayer AR (2009) Interrater and intermethod reliability of default mode network selection. Hum Brain Mapp 30:2293–2303

    Article  PubMed Central  PubMed  Google Scholar 

  19. Otten ML, Mikell CB, Youngerman BE, Liston C, Sisti MB, Bruce JN, Small SA, McKhann GM 2nd (2012) Motor deficits correlate with resting state motor network connectivity in patients with brain tumours. Brain 135:1017–1026

    Article  PubMed  Google Scholar 

  20. Fisher RA (1921) On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1:3–32

    Google Scholar 

  21. Shimony JS, Zhang D, Johnston JM, Fox MD, Roy A, Leuthardt EC (2009) Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad Radiol 16:578–583

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang D, Johnston JM, Fox MD, Leuthardt EC, Grubb RL, Chicoine MR, Smyth MD, Snyder AZ, Raichle ME, Shimony JS (2009) Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery 65:226–236

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fransson P (2006) How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44:2836–2845

    Article  PubMed  Google Scholar 

  24. Wu JT, Wu HZ, Yan CG, Chen WX, Zhang HY, He Y, Yang HS (2011) Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study. Neurosci Lett 504:62–67

    Article  CAS  PubMed  Google Scholar 

  25. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SA (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18:1856–1864

    Article  CAS  PubMed  Google Scholar 

  27. Persson J, Lustig C, Nelson JK, Reuter-Lorenz PA (2007) Age differences in deactivation: a link to cognitive control? J Cogn Neurosci 19:1021–1032

    Article  PubMed  Google Scholar 

Download references

Funding

NIH/NCI R21CA167354 (BME); UCLA Institute for Molecular Medicine Seed Grant (BME); UCLA Radiology Exploratory Research Grant (BME); University of California Cancer Research Coordinating Committee Grant (BME); ACRIN Young Investigator Initiative Grant (BME); Art of the Brain (TFC); Ziering Family Foundation in memory of Sigi Ziering (TFC); Singleton Family Foundation (TFC); and Clarance Klein Fund for Neuro-Oncology (TFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Ellingson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, R.J., Bookheimer, S.Y., Cloughesy, T.F. et al. Altered functional connectivity of the default mode network in diffuse gliomas measured with pseudo-resting state fMRI. J Neurooncol 116, 373–379 (2014). https://doi.org/10.1007/s11060-013-1304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1304-2

Keywords

Navigation