Skip to main content

Advertisement

Log in

Pseudo-continuous arterial spin labeling reflects vascular density and differentiates angiomatous meningiomas from non-angiomatous meningiomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Pseudo-continuous arterial spin labeling (PCASL) can measure tumor blood flow (TBF) reliably. We investigated meningioma TBF using PCASL and assessed for any correlation with histopathological microvascular density (MVD) and the World Health Organization (WHO) classification. Conventional MRI with contrast T1-weighted images and PCASL were acquired with a 3 T scanner before surgery in 25 consecutive patients with meningiomas. Using the PCASL perfusion map, the mean and maximum TBF were calculated from regions of interest placed in the largest cross-sectional plane of each tumor. Tissue sections from 16 patients were stained with CD31 to evaluate MVD and were assigned a WHO classification. The TBFs were statistically compared with MVD and the histopathological meningioma subtypes. There were 16 meningothelial meningiomas, four angiomatous meningiomas, two fibrous meningiomas, one transitional meningioma, and two atypical meningiomas. We observed significant correlation between MVD and both mean and maximum TBF (p < 0.05). The mean and maximum TBF (meanTBF, maxTBF) in angiomatous meningiomas are significantly higher than that in non-angiomatous meningiomas (p < 0.05). PCASL is useful in assessing meningioma vascularity, and in differentiating angiomatous meningiomas from non-angiomatous meningiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PCASL:

Pseudo-continuous arterial spin labeling

TBF:

Tumor blood flow

MVD:

Microvascular density

WHO:

World Health Organization

T1WI:

T1-weighted images

ASL:

Arterial spin labeling

EPI:

Echo planar imaging

MRA:

MR angiography

MRI:

Magnetic resonance imaging

DSA:

Digital subtraction angiography

ECA:

External carotid artery

ICA:

Internal carotid artery

DWI:

Diffusion-weighted imaging

FLAIR:

Fluid-attenuated inversion recovery

TR:

Repetition time

TE:

Echo time

NEX:

Number of excitations

RBW:

Receiver band width

FOV:

Field of view

ROI:

A region of interest

References

  1. Detre JA, Alsop DC (1999) Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol 30:115–124

    Article  CAS  PubMed  Google Scholar 

  2. Detre JA, Rao H, Wang DJ, Chen YF, Wang Z (2012) Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging (JMRI) 35:1026–1037

    Article  Google Scholar 

  3. Koretsky AP (2012) Early development of arterial spin labeling to measure regional brain blood flow by MRI. NeuroImage 62:602–607

    Article  PubMed Central  PubMed  Google Scholar 

  4. Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532

    Article  PubMed  Google Scholar 

  5. Kimura H, Takeuchi H, Koshimoto Y et al (2006) Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR 27:85–93

    CAS  PubMed  Google Scholar 

  6. Noguchi T, Yoshiura T, Hiwatashi A et al (2008) Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR 29:688–693

    Article  CAS  PubMed  Google Scholar 

  7. Sakai N, Koizumi S, Yamashita S et al (2013) Arterial spin-labeled perfusion imaging reflects vascular density in nonfunctioning pituitary macroadenomas. AJNR 34:2139–2143

    Article  CAS  PubMed  Google Scholar 

  8. Jung Y, Wong EC, Liu TT (2010) Multiphase pseudocontinuous arterial spin labeling (MP-PCASL) for robust quantification of cerebral blood flow. Magn Reson Med 64:799–810

    Article  CAS  PubMed  Google Scholar 

  9. Pfefferbaum A, Chanraud S, Pitel AL et al (2010) Volumetric cerebral perfusion imaging in healthy adults: regional distribution, laterality, and repeatability of pulsed continuous arterial spin labeling (PCASL). Psychiatry Res 182:266–273

    Article  PubMed Central  PubMed  Google Scholar 

  10. Yamamoto T, Takeuchi H, Kinoshita K et al (2014) Assessment of tumor blood flow and its correlation with histopathologic features in skull base meningiomas and schwannomas by using pseudo-continuous arterial spin labeling images. Eur J Radiol 83:817–823

    Article  PubMed  Google Scholar 

  11. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed Central  PubMed  Google Scholar 

  12. Arita H, Kinoshita M, Okita Y et al (2012) Clinical characteristics of meningiomas assessed by 11C-methionine and 18F-fluorodeoxyglucose positron-emission tomography. J Neurooncol 107:379–386

    Article  PubMed  Google Scholar 

  13. Xu G, Rowley HA, Wu G et al (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer’s disease. NMR Biomed 23:286–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang DJ, Alger JR, Qiao JX et al (2012) The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke 43:1018–1024

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bokkers RP, Hernandez DA, Merino JG et al (2012) Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 43:1290–1294

    Article  PubMed Central  PubMed  Google Scholar 

  16. Alsop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J Alzheimers Dis 20:871–880

    PubMed Central  PubMed  Google Scholar 

  17. Kawaji H, Koizumi S, Sakai N et al (2013) Evaluation of tumor blood flow after feeder embolization in meningiomas by arterial spin-labeling perfusion magnetic resonance imaging. J Neuroradiol 40:303–306

    Article  PubMed  Google Scholar 

  18. Yamamoto T, Kinoshita K, Kosaka N et al (2013) Monitoring of extra-axial brain tumor response to radiotherapy using pseudo-continuous arterial spin labeling images: preliminary results. Magn Reson Imaging 31:1271–1277

    Article  PubMed  Google Scholar 

  19. Fellah S, Girard N, Chinot O et al (2011) Early evaluation of tumoral response to antiangiogenic therapy by arterial spin labeling perfusion magnetic resonance imaging and susceptibility weighted imaging in a patient with recurrent glioblastoma receiving bevacizumab. J Clin Oncol 29:e308–e311

    Article  PubMed  Google Scholar 

  20. Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391

    Article  CAS  PubMed  Google Scholar 

  21. Schmid S, Aboul-Enein F, Pfisterer W et al (2010) Vascular endothelial growth factor: the major factor for tumor neovascularization and edema formation in meningioma patients. Neurosurgery 67:1703–1708

    Article  PubMed  Google Scholar 

  22. Yamashita K, Yoshiura T, Hiwatashi A et al (2012) Arterial spin labeling of hemangioblastoma: differentiation from metastatic brain tumors based on quantitative blood flow measurement. Neuroradiology 54:809–813

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no personal, financial, or institutional interest in any of the drugs, materials, or devices in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Sakai.

Additional information

Shinichiro Koizumi and Naoto Sakai have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koizumi, S., Sakai, N., Kawaji, H. et al. Pseudo-continuous arterial spin labeling reflects vascular density and differentiates angiomatous meningiomas from non-angiomatous meningiomas. J Neurooncol 121, 549–556 (2015). https://doi.org/10.1007/s11060-014-1666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1666-0

Keywords

Navigation