Skip to main content

Advertisement

Log in

Pseudoprogression in children, adolescents and young adults with non-brainstem high grade glioma and diffuse intrinsic pontine glioma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Pseudoprogression (PsP) is a treatment-related phenomenon which hinders response interpretation. Its prevalence and clinical impact have not been evaluated in children/adolescents. We assessed the characteristics, risk factors and prognosis of PsP in children/adolescents and young-adults diagnosed with non-brainstem high grade gliomas (HGG) and diffuse intrinsic pontine gliomas (DIPG). Patients aged 1–21 years diagnosed with HGG or DIPG between 1995 and 2012 who had completed radiotherapy were eligible. PsP was assessed according to study-specific criteria and correlated with first-line treatment, molecular biomarkers and survival. Ninety-one patients (47 HGG, 44 DIPG) were evaluable. Median age: 10 years (range, 2–20). Eleven episodes of PsP were observed in 10 patients (4 HGG, 6 DIPG). Rates of PsP: 8.5 % (HGG); 13.6 % (DIPG). Two episodes of PsP were based on clinical findings alone; nine episodes had concurrent radiological changes: increased size of lesions (n = 5), new focal enhancement (n = 4). Temozolomide, MGMT methylation or H3F3A mutations were not found to be associated with increased occurrence of PsP. For HGG, 1-year progression-free survival (PFS) was 41.9 % no-PsP versus 100 % PsP (p = 0.041); differences in 1-year overall survival (OS) were not significant. For DIPG, differences in 1-year PFS and OS were not statistically significant. Hazard ratio (95 %CI) of PsP for OS was 0.551 (0.168–1.803; p = 0.325) in HGG; and 0.308 (0.107–0.882; p = 0.028) in DIPG. PsP occurred in both pediatric HGG and DIPG patients at a comparable rate to adult HGG. PsP was associated with improved 1-yr PFS in HGG patients. PsP had a protective effect upon OS in DIPG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    Article  PubMed  Google Scholar 

  2. Verma N, Cowperthwaite MC, Burnett MG, Markey MK (2013) Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 15:515–534

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  4. Kruser TJ, Mehta MP, Robins HI (2013) Pseudoprogression after glioma therapy: a comprehensive review. Expert Rev Neurother 13:389–403

    Article  CAS  PubMed  Google Scholar 

  5. Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197

    Article  PubMed  Google Scholar 

  6. Thompson EM, Guillaume DJ, Dósa E, Li X, Nazemi KJ, Gahramanov S, Hamilton BE, Neuwelt EA (2012) Dual contrast perfusion MRI in a single imaging session for assessment of pediatric brain tumors. J Neurooncol 109:105–114

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ozdemir N, Celkan T (2010) Pseudoprogression after radiotherapy with concurrent temozolomide in a child with anaplastic astrocytoma. Pediatr Hematol Oncol 27:317–319

    Article  CAS  PubMed  Google Scholar 

  8. Negretti L, Blanchard P, Couanet D, Kieffer V, Goma G, Habrand JL, Dhermain F, Valteau-Couanet D, Grill J, Dufour C (2012) Pseudoprogression after high-dose busulfan-thiotepa with autologous stem cell transplantation and radiation therapy in children with brain tumors: impact on survival. Neuro Oncol 14:1413–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chassot A, Canale S, Varlet P et al (2012) Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J Neurooncol 106:399–407

    Article  CAS  PubMed  Google Scholar 

  10. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Warren KE (2012) Diffuse intrinsic pontine glioma: poised for progress. Front Oncol 2:205

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gaspar N, Marshall L, Perryman L et al (2010) MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res 70:9243–9252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gessi M, Gielen GH, Hammes J, Dörner E, Zur Mühlen A, Waha A, Pietsch T (2013) H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J Neurooncol 112:67–72

    Article  CAS  PubMed  Google Scholar 

  14. Bechet D, Gielen GGH, Korshunov A et al (2014) Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 128:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  16. Bady P, Sciuscio D, Diserens A-C et al (2012) MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 124:547–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanghera P, Perry J, Sahgal A, Symons S, Aviv R, Morrison M, Lam K, Davey P, Tsao MN (2010) Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can J Neurol Sci 37:36–42

    Article  PubMed  Google Scholar 

  18. de Wit MCY, de Bruin HG, Eijkenboom W, Sillevis Smitt PAE, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63:535–537

    Article  PubMed  Google Scholar 

  19. Taal W, Brandsma D, de Bruin HG, Bromberg JE, Swaak-Kragten AT, Smitt PAES, van Es CA, van den Bent MJ (2008) Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113:405–410

    Article  CAS  PubMed  Google Scholar 

  20. Clarke JL, Iwamoto FM, Sul J et al (2009) Randomized phase II trial of chemoradiotherapy followed by either dose-dense or metronomic temozolomide for newly diagnosed glioblastoma. J Clin Oncol 27:3861–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roldán GB, Scott JN, McIntyre JB et al (2009) Population-based study of pseudoprogression after chemoradiotherapy in GBM. Can J Neurol Sci 36:617–622

    Article  PubMed  Google Scholar 

  22. Gerstner ER, McNamara MB, Norden AD, Lafrankie D, Wen PY (2009) Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol 94:97–101

    Article  CAS  PubMed  Google Scholar 

  23. Pouleau H-B, Sadeghi N, Balériaux D, Mélot C, De Witte O, Lefranc F (2012) High levels of cellular proliferation predict pseudoprogression in glioblastoma patients. Int J Oncol 40:923–928

    PubMed  Google Scholar 

  24. Stuplich M, Hadizadeh DR, Kuchelmeister K et al (2012) Late and prolonged pseudoprogression in glioblastoma after treatment with lomustine and temozolomide. J Clin Oncol 30:e180–e183

    Article  CAS  PubMed  Google Scholar 

  25. Chaskis C, Neyns B, Michotte A, De Ridder M, Everaert H (2009) Pseudoprogression after radiotherapy with concurrent temozolomide for high-grade glioma: clinical observations and working recommendations. Surg Neurol 72:423–428

    Article  PubMed  Google Scholar 

  26. Radbruch A, Fladt J, Kickingereder P et al (2015) Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro Oncol 17:151–159

    Article  PubMed  Google Scholar 

  27. Chan DTM, Ng RYT, Siu DYW et al (2012) Pseudoprogression of malignant glioma in Chinese patients receiving concomitant chemoradiotherapy. Hong Kong Med J 18:221–225

    PubMed  Google Scholar 

  28. Linhares P, Carvalho B, Figueiredo R, Reis RM, Vaz R (2013) Early Pseudoprogression following Chemoradiotherapy in Glioblastoma Patients: the Value of RANO Evaluation. J Oncol 2013:690585

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chang JH, Kim C-Y, Choi BS, Kim YJ, Kim JS, Kim IA (2014) Pseudoprogression and pseudoresponse in the management of high-grade glioma: optimal decision timing according to the response assessment of the neuro-oncology working group. J Korean Neurosurg Soc 55:5–11

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hygino da Cruz LC, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG (2011) Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 32:1978–1985

    Article  PubMed  Google Scholar 

  31. Warren KE, Poussaint TY, Vezina G et al (2013) Challenges with defining response to antitumor agents in pediatric neuro-oncology: a report from the response assessment in pediatric neuro-oncology (RAPNO) working group. Pediatr Blood Cancer 60:1397–1401

    Article  PubMed  Google Scholar 

  32. Gunjur A, Lau E, Taouk Y, Ryan G (2011) Early post-treatment pseudo-progression amongst glioblastoma multiforme patients treated with radiotherapy and temozolomide: a retrospective analysis. J Med Imaging Radiat Oncol 55:603–610

    Article  PubMed  Google Scholar 

  33. Young RJ, Gupta A, Shah AD, Graber JJ, Zhang Z, Shi W, Holodny AI, Omuro AMP (2011) Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology 76:1918–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82:81–83

    Article  PubMed  Google Scholar 

  35. Tsien C, Galbán CJ, Chenevert TL et al (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 28:2293–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yaman E, Buyukberber S, Benekli M, Oner Y, Coskun U, Akmansu M, Ozturk B, Kaya AO, Uncu D, Yildiz R (2010) Radiation induced early necrosis in patients with malignant gliomas receiving temozolomide. Clin Neurol Neurosurg 112:662–667

    Article  PubMed  Google Scholar 

  37. Peca C, Pacelli R, Elefante A, De Caro MD, Vergara P, Mariniello G, Giamundo A, Maiuri F (2009) Early clinical and neuroradiological worsening after radiotherapy and concomitant temozolomide in patients with glioblastoma: tumour progression or radionecrosis? Clin Neurol Neurosurg 111:331–334

    Article  CAS  PubMed  Google Scholar 

  38. Topkan E, Topuk S, Oymak E, Parlak C, Pehlivan B (2012) Pseudoprogression in patients with glioblastoma multiforme after concurrent radiotherapy and temozolomide. Am J Clin Oncol 35:284–289

    Article  PubMed  Google Scholar 

  39. Kang H-C, Kim C-Y, Han JH, Choe GY, Kim JH, Kim JH, Kim IA (2011) Pseudoprogression in patients with malignant gliomas treated with concurrent temozolomide and radiotherapy: potential role of p53. J Neurooncol 102:157–162

    Article  CAS  PubMed  Google Scholar 

  40. Ceschin R, Kurland BF, Abberbock SR, Ellingson BM, Okada H, Jakacki RI, Pollack IF, Panigrahy A (2015) Parametric response mapping of apparent diffusion coefficient as an imaging biomarker to distinguish pseudoprogression from true tumor progression in peptide-based vaccine therapy for pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 36:2170–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nasseri M, Gahramanov S, Netto JP, Fu R, Muldoon LL, Varallyay C, Hamilton BE, Neuwelt EA (2014) Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question. Neuro Oncol 16:1146–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fabi A, Russillo M, Metro G, Vidiri A, Di Giovanni S, Cognetti F (2009) Pseudoprogression and MGMT status in glioblastoma patients: implications in clinical practice. Anticancer Res 29:2607–2610

    PubMed  Google Scholar 

  43. Kong D-S, Kim ST, Kim E-H, Lim DH, Kim WS, Suh Y-L, Lee J-I, Park K, Kim JH, Nam D-H (2011) Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 32:382–387

    Article  PubMed  Google Scholar 

  44. Park C-K, Kim J, Yim SY et al (2011) Usefulness of MS-MLPA for detection of MGMT promoter methylation in the evaluation of pseudoprogression in glioblastoma patients. Neuro Oncol 13:195–202

    Article  CAS  PubMed  Google Scholar 

  45. Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korshunov A, Ryzhova M, Hovestadt V et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129:669–678

    Article  CAS  PubMed  Google Scholar 

  47. Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ (2015) Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 36:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR (2010) Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 52:297–306

    Article  PubMed  Google Scholar 

  49. Hatzoglou V, Ulaner GA, Zhang Z, Beal K, Holodny AI, Young RJ (2013) Comparison of the effectiveness of MRI perfusion and fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor: a preliminary retrospective analysis with pathologic correlation in all patients. Clin Imaging 37:451–457

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Ms Helen Underwood, Royal Marsden Registry department. Mr Karl Spolander, PACS manager. Ms Julie Mycroft, Royal Marsden Pharmacy. We acknowledge NHS funding to the NIHR Biomedical Research Centre (BRC) and the NIHR Clinical Research Facility at The Royal Marsden and the Institute of Cancer Research, as well as Experimental Cancer Medicines Centre (ECMC) funding. Additionally, F.C. holds a senior fellowship funded by the BRC and the Sohn Foundation. L.F., L.M. and L.V.M. are funded by the Oak Foundation (Grant OCay-04-169). A.D.J.P. is supported by Cancer Research UK (CRUK): programme grant C1178/A10294 - Chair in Paediatric Oncology. M.O.L. is an NIHR Senior Investigator. CRUK and Engineering and Physical Sciences Research Council (EPSRC) funding to the pediatric programme in functional imaging (C7809/A10342).

Funding

CRUK and EPSRC funding to the CRUK Centre for Cancer Imaging (C1060/A16464, C1060/A10334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Carceller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 23 kb)

Supplementary material 2 (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carceller, F., Fowkes, L.A., Khabra, K. et al. Pseudoprogression in children, adolescents and young adults with non-brainstem high grade glioma and diffuse intrinsic pontine glioma. J Neurooncol 129, 109–121 (2016). https://doi.org/10.1007/s11060-016-2151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2151-8

Keywords

Navigation