Skip to main content
Log in

Imaging correlates for the 2016 update on WHO classification of grade II/III gliomas: implications for IDH, 1p/19q and ATRX status

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 13 September 2017

This article has been updated

Abstract

The 2016 World Health Organization Classification of Tumors of the Central Nervous System incorporates the use of molecular information into the classification of brain tumors, including grade II and III gliomas, providing new prognostic information that cannot be delineated based on histopathology alone. We hypothesized that these genomic subgroups may also have distinct imaging features. A retrospective single institution study was performed on 40 patients with pathologically proven infiltrating WHO grade II/III gliomas with a pre-treatment MRI and molecular data on IDH, chromosomes 1p/19q and ATRX status. Two blinded Neuroradiologists qualitatively assessed MR features. The relationship between each parameter and molecular subgroup (IDH-wildtype; IDH-mutant-1p/19q codeleted-ATRX intact; IDH-mutant-1p/19q intact-ATRX loss) was evaluated with Fisher’s exact test. Progression free survival (PFS) was also analyzed. A border that could not be defined on FLAIR was most characteristic of IDH-wildtype tumors, whereas IDH-mutant tumors demonstrated either well-defined or slightly ill-defined borders (p = 0.019). Degree of contrast enhancement and presence of restricted diffusion did not distinguish molecular subgroups. Frontal lobe predominance was associated with IDH-mutant tumors (p = 0.006). The IDH-wildtype subgroup had significantly shorter PFS than the IDH-mutant groups (p < 0.001). No differences in PFS were present when separating by tumor grade. FLAIR border patterns and tumor location were associated with distinct molecular subgroups of grade II/III gliomas. These imaging features may provide fundamental prognostic and predictive information at time of initial diagnostic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 13 September 2017

    In the initial online publication, the values in the last two rows in Table 1 were in the wrong rows. The original article has been corrected.

References

  1. The Cancer Genome Atlas Research Network (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    Article  PubMed Central  Google Scholar 

  2. Coons SW, Johnson PC, Scheithauer BW et al (1997) Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer 79:1381–1393

    Article  CAS  PubMed  Google Scholar 

  3. Van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120:297–304

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reifenberger J, Reifenberger G, Liu L et al (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145:1175–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jenkins RB, Blair H, Ballman KV et al (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66:9852–9861

    Article  CAS  PubMed  Google Scholar 

  7. Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31:337–343

    Article  CAS  PubMed  Google Scholar 

  8. Van den Bent MJ, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350

    Article  PubMed  Google Scholar 

  9. Sanson M, Marie Y, Paris S et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27:4150–4154

    Article  CAS  PubMed  Google Scholar 

  10. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watanabe T, Nobusawa S, Kleihues P et al (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474

    Article  PubMed  Google Scholar 

  13. Duncan CG, Barwick BG, Jin G et al (2012) A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 22:2339–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu XY, Gerges N, Korshunov A et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124:615–625

    Article  CAS  PubMed  Google Scholar 

  16. Cairncross JG, Wang M, Jenkins RB et al (2014) Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 32:783–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kannan K, Inagaki A, Silber J et al (2012) Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 3:1194–1203

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wiestler B, Capper D, Holland-Letz T et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126:443–451

    Article  CAS  PubMed  Google Scholar 

  19. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  20. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification of tumors of the central nervous system. IARC, Lyon

    Google Scholar 

  21. Louis DN, Perry A, Burger P et al (2014) International society of Neuropathology-haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24:429–435

    Article  PubMed  Google Scholar 

  22. Dubbink HJ, Atmodimedjo PN, Kros JM et al (2016) Molecular classification of anaplastic oligodendroglioma using next-generation sequencing: a report of the prospective randomized EORTC Brain Tumor Group 26951 phase III trial. Neuro Oncol 18:388–400

    Article  PubMed  Google Scholar 

  23. Metellus P, Coulibaly B, Colin C et al (2010) Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 120:719–729

    Article  PubMed  Google Scholar 

  24. Qi S, Yu L, Li H et al (2014) Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms. Oncol Lett 7:1895–1902

    CAS  PubMed  PubMed Central  Google Scholar 

  25. da Fonseca AJ, Galvão RS, Miranda AE et al (2016) Comparison of three human papillomavirus DNA detection methods: next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing. J Med Virol 5:888–894

    Article  Google Scholar 

  26. Jenkinson MD, du Plessis DG, Smith TS et al (2006) Histological growth patterns and genotype in oligodendroglial tumors: correlation with MRI features. Brain 129:1884–1891

    Article  PubMed  Google Scholar 

  27. Reyes-Botero G, Caroline D, Idbaih A et al (2014) Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability and angiogenic gene expression. Neuro Oncol. 16:662–670

    Article  CAS  PubMed  Google Scholar 

  28. Lai A, Kharbanda S, Pope WB et al (2011) Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 29:4482–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Persson AI, Petritsch C, Swartling FJ et al (2010) Non-stem cell origin for oligodendroglioma. Cancer Cell 18:669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leeper HE, Caron AA, Decker PA et al (2015) IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas. Oncotarget 6:30295–30305

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas. Acta Neuropathol 129:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank patients at the UCSD Moores Cancer Center Neuro-Oncology Program for their generous participation.

Funding

National Institutes of Health Grants R01NS065838 (C.R.M.), RC2 DA29475 and EB00790-06 (A.M.D.), UL1TR000100 and KL2TR00099 (J.A.H.); National Cancer Institute Cancer Center Specialized Grant P30CA023100 (C.R.M.); National Science Foundation Grant 1430082 (N.S.W.); American Cancer Society Award ACS-IRG 70-002 (J.A.H.); and American Cancer Society Research Scholar Grant RSG-15-229-01-CCE (C.R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel L. Delfanti.

Additional information

The original version of this article has been revised: The values in the last two rows in Table 1 have been switched to the correct rows.

An erratum to this article is available at https://doi.org/10.1007/s11060-017-2620-8.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 136 KB)

Supplementary material 2 (PDF 91 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delfanti, R.L., Piccioni, D.E., Handwerker, J. et al. Imaging correlates for the 2016 update on WHO classification of grade II/III gliomas: implications for IDH, 1p/19q and ATRX status. J Neurooncol 135, 601–609 (2017). https://doi.org/10.1007/s11060-017-2613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2613-7

Keywords

Navigation