Skip to main content

Advertisement

Log in

Glutamine Addiction In Gliomas

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cancer cells develop and succeed by shifting to different metabolic programs compared with their normal cell counterparts. One of the classical hallmarks of cancer cells is their higher glycolysis rate and lactate production even in the presence of abundant O2 (Warburg effect). Another common metabolic feature of cancer cells is a high rate of glutamine (Gln) consumption normally exceeding their biosynthetic and energetic needs. The term Gln addiction is now widely used to reflect the strong dependence shown by most cancer cells for this essential nitrogen substrate after metabolic reprogramming. A Gln/glutamate (Glu) cycle occurs between host tissues and the tumor in order to maximize its growth and proliferation rates. The mechanistic basis for this deregulated tumor metabolism and how these changes are connected to oncogenic and tumor suppressor pathways are becoming increasingly understood. Based on these advances, new avenues of research have been initiated to find novel therapeutic targets and to explore strategies that interfere with glutamine metabolism as anticancer therapies. In this review, we provided an updated overview of glutamine addiction in glioma, the most prevalent type of brain tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Brennan et al., 2013 [19]. (Color figure online)

Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

α-KG:

2-oxoglutarate

AMPARs:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors

BPTES:

[bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide]

NEAA:

Non-essential amino acids

DON:

6-diazo-5-oxo-l-norleucine

EATC:

Ehrlich ascites tumor cells

GBM:

Glioblastoma multiforme

GDH:

Glutamate dehydrogenase

GS:

Glutamine synthetase

GSH:

Reduced glutathione

HDAC:

Histone deacetylase

IDH1:

Isocitrate dehydrogenase 1

mTORC1:

Mammalian target of rapamycin complex 1

NF-κB:

Nuclear factor-kappa B

NMDARs:

N-methyl-d-aspartate receptors

OXPHOS:

Oxidative phosphorylation

ROS:

Reactive oxygen species

T-ALL:

T-cell acute lymphoblastic leukemia

TCA:

Tricarboxylic acid cycle

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  2. Kvamme E, Svenneby G (1961) The effect of glucose on glutamine utilization by Ehrlich ascites tumor cells. Cancer Res 21:92–98

    CAS  PubMed  Google Scholar 

  3. Kovacevic Z, Morris HP (1972) The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32:326–333

    CAS  PubMed  Google Scholar 

  4. Wise DR, DeBerardinis RJ, Mancuso A et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hertz L (1979) Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol 13:277–323

    Article  CAS  PubMed  Google Scholar 

  6. Berl S, Clarke DD (1983) The metabolic compartmentation concept. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, glutamate and GABA in the central nervous system. Liss, New York, pp 205–217

    Google Scholar 

  7. Norenberg MD, Martínez-Hernández A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  CAS  PubMed  Google Scholar 

  8. Hertz L (2004) Intercellular metabolic compartmentation in the brain: past, present and future. Neurochem Int 45:285–296

    Article  CAS  PubMed  Google Scholar 

  9. Waagepetersen HS, Qu H, Sonnewald U, Shimamoto K, Schousboe A (2005) Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochem Int 47:92–102

    Article  CAS  PubMed  Google Scholar 

  10. Robert SM, Sontheimer H (2014) Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 71:1839–1854

    Article  CAS  PubMed  Google Scholar 

  11. Eid T, Lee TSW, Wang Y, Peréz E et al (2013) Gene expression of glutamate metabolizing enzymes in the hippocampal formation in human temporal lobe epilepsy. Epilepsia 54:228–238

    Article  CAS  PubMed  Google Scholar 

  12. Buckingham SC, Campbell SL, Haas BR, Montana V et al (2012) Glutamate release by primary brain tumors induces epileptic activity. Nat Med 17:1269–1274

    Article  Google Scholar 

  13. Ostrom QT, Bauchet L, Davis FG et al (2014) The epidemiology of glioma in adults: A “state of the science” review. Neuro-Oncology 16:896–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 who classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cuddapah VA, Robel S, Watkins S, Sontheimer H (2014) A neurocentric perspective on glioma invasion. Nat Rev Neurosci 15:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  17. The Cancer Genome Atlas (TCGA) Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  18. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Müller F (1889) Stoffwechseluntersuchungen bei Krebskranken. Ztschr f klin Med 16:496–549

    Google Scholar 

  23. Mider GB (1951) Some aspects of nitrogen and energy metabolism in cancerous subjects: a review. Cancer Res 11:821–829

    CAS  PubMed  Google Scholar 

  24. Shrivastava GC, Quastel JH (1962) Malignancy and tissue metabolism. Nature 196:876–880

    Article  CAS  PubMed  Google Scholar 

  25. Marin-Valencia I, Yang C, Mashimo T et al (2012) Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15:827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Márquez J, Sánchez-Jiménez F, Medina MA et al (1989) Nitrogen metabolism in tumor bearing mice. Arch Biochem Biophys 268:667–675

    Article  PubMed  Google Scholar 

  27. Rivera S, Azcón-Bieto J, López-Soriano FJ et al (1988) Amino acid metabolism in tumour-bearing mice. Biochem J 249:443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Medina MA, Sánchez-Jiménez F, Márquez J, Quesada AR, Núñez de Castro I (1992) Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem 113:1–15

    Article  CAS  PubMed  Google Scholar 

  29. Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Investig 123:3678–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Márquez J, Matés JM, Alonso FJ, Martín-Rufián M, Lobo C, Campos-Sandoval JA (2015) Canceromics studies unravel tumor’s glutamine addiction after metabolic reprogramming. In: Mazurek S, Shoshan M (eds) Tumor cell metabolism: patways, regulation and biology. Springer Verlag, Vienna, pp 257–286

    Google Scholar 

  31. Tardito S, Oudin A, Ahmed SU et al (2015) Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 17:1556–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Venneti S, Dunphy MP, Zhang H et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med 7:274ra17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sidoryk M, Matyja E, Dybel A et al (2004) Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas. Neuroreport 15:575–578

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi M, Mizutani A, Nishi K et al (2016) Differences in accumulation and the transport mechanism of l-and d-methionine in high-and low-grade human glioma cells. Nucl Med Biol 44:78–82

    Article  PubMed  Google Scholar 

  35. Dolińska M, Dybel A, Zabłocka B, Albrecht J (2003) Glutamine transport in C6 glioma cells shows ASCT2 system characteristics. Neurochem Int 43:501–507

    Article  PubMed  Google Scholar 

  36. Bungard CI, McGivan JD (2004) Glutamine availability up-regulates expression of the amino acid transporter protein ASCT2 in HepG2 cells and stimulates the ASCT2 promoter. Biochem J 382:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicklin P, Bergman P, Zhang B et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–2676

    CAS  PubMed  Google Scholar 

  39. Goossens V, Grooten J, Fiers W (1996) The oxidative metabolism of glutamine. A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells. J Biol Chem 271:192–196

    Article  CAS  PubMed  Google Scholar 

  40. Yuneva M, Zamboni N, Oefner P et al (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178:93–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DeBerardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dranoff G, Elion GB, Friedman HS, Campbell GL, Bigner DD (1985) Influence of glutamine on the growth of human glioma and medulloblastoma in culture. Cancer Res 45:4077–4081

    CAS  PubMed  Google Scholar 

  44. He Q, Shi X, Zhang L et al (2016) De novo glutamine synthesis: importance for the proliferation of glioma cells and potentials for its detection with 13N-ammonia. Mol Imaging 15:1–9

    Article  Google Scholar 

  45. de Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59:1181–1189

    Article  PubMed  Google Scholar 

  46. Watkins S, Sontheimer H (2012) Unique biology of gliomas: challenges and opportunities. Trends Neurosci 35:546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Groot JF, Liu TJ, Fuller G, Yung WK (2005) The excitatory amino acid transporter-2 induces apoptosis and decreases glioma growth in vitro and in vivo. Cancer Res 65:1934–1940

    Article  PubMed  Google Scholar 

  48. Márquez J, de la López Oliva AR, Matés JM et al (2006) Glutaminase: a multifaceted protein not only involved in generating glutamate. Neurochem Int 48:465–471

    Article  PubMed  Google Scholar 

  49. de la Rosa V, Campos-Sandoval JA, Martín-Rufián M (2009) A novel glutaminase isoform in mammalian tissues. Neurochem Int 55:76–84

    Article  PubMed  Google Scholar 

  50. Martín-Rufián M, Tosina M, Campos-Sandoval JA et al (2012) Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS ONE 7:e38380

    Article  PubMed  PubMed Central  Google Scholar 

  51. Aledo JC, Gómez-Fabre PM, Olalla L et al (2000) Identification of two human glutaminase loci and tissue-specific expression of the two related genes. Mamm Genome 11:1107–1110

    Article  CAS  PubMed  Google Scholar 

  52. Matés JM, Segura JA, Martín-Rufián M et al (2013) Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med 13:514–534

    Article  PubMed  Google Scholar 

  53. Schousboe A, Hertz L, Svenneby G, Kvamme E (1979) Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J Neurochem 32:943–950

    Article  CAS  PubMed  Google Scholar 

  54. Kvamme E, Svenneby G, Hertz L, Schousboe A (1982) Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem Res 7:761–770

    Article  CAS  PubMed  Google Scholar 

  55. Szeliga M, Matyja E, Obara M et al (2008) Relative expression of mRNAs coding for glutaminase isoforms in CNS tissues and CNS tumors. Neurochem Res 33:808–813

    Article  CAS  PubMed  Google Scholar 

  56. Márquez J, Matés JM, Campos-Sandoval JA (2016) Glutaminases. In: Sonnewald U, Schousboe A (eds) Advances in neurobiology. The glutamate/GABA/glutamine cycle: amino acid neurotransmitter homeostasis. Springer Verlag, Vienna, pp 133–171

    Google Scholar 

  57. Cardona C, Sánchez-Mejías E, Dávila JC et al (2015) Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia 63:365–382

    Article  PubMed  Google Scholar 

  58. Szeliga M, Sidoryk M, Matyja E et al (2005) Lack of expression of the liver-type glutaminase (LGA) mRNA in human malignant gliomas. Neurosci Lett 374:171–173

    Article  CAS  PubMed  Google Scholar 

  59. Collins CL, Wasa M, Souba WW et al (1998) Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines. J Cell Physiol 176:166–178

    Article  CAS  PubMed  Google Scholar 

  60. Gao P, Tchernyshyov I, Chang TC et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang J-B, Erickson JW, Fuji R et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yuneva M, Fan TWM, Allen TD (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Turner A, McGivan JD (2003) Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas. Biochem J 370:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pérez-Gómez C, Campos-Sandoval JA, Alonso FJ et al (2005) Co-expression of glutaminase K and L isoenzymes in human tumour cells. Biochem J 386:535–542

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hu W, Zhang C, Wu R et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107:7455–7460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suzuki S, Tanaka T, Poyurovsky MV et al (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 107:7461–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang J, Wang C, Chen M et al (2013) Epigenetic silencing of glutaminase 2 in human liver and colon cancers. BMC Cancer 13:601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Szeliga M, Bogacinska-Karas M, Kuzmicz K et al (2016) Downregulation of GLS2 in glioblastoma cells is related to DNA hypermethylation but not to the p53 status. Mol Carcinog 55:1309–1316

    Article  CAS  PubMed  Google Scholar 

  69. Xiang L, Xie G, Liu C, Zhou J, Chen J, Yu S, Li J, Pang X, Shi H, Liang H (2013) Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim Biophys Acta - Mol Cell Res 1833(12):2996–3005

    Article  CAS  Google Scholar 

  70. Xiao D, Ren P, Su H et al (2015) Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget 6:40655–40666

    PubMed  PubMed Central  Google Scholar 

  71. Coloff JL, Murphy JP, Braun CR et al (2016) Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab 23:867–880

    Article  CAS  PubMed  Google Scholar 

  72. Yang C, Sudderth J, Dang T et al (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69:7986–7993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nagashima H, Tanaka K, Sasayama T et al (2016) Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma. Neuro-Oncology 1–10. doi:10.1093/neuonc/now090

  74. Csibi A, Fendt SM, Li C et al (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duran RV, Oppliger W, Robitaille AM et al (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358

    Article  CAS  PubMed  Google Scholar 

  76. Panosyan EH, Lasky JL, Lin HJ et al (2016) Clinical aggressiveness of malignant gliomas is linked to augmented metabolism of amino acids. J Neurooncol 128:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yudkoff M (2016) Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS. Neurochem Res. doi:10.1007/s11064-016-2057-z

    PubMed  PubMed Central  Google Scholar 

  78. Tönjes M, Barbus S, Park YJ et al (2013) BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 19:901–908

    Article  PubMed  PubMed Central  Google Scholar 

  79. Seltzer MJ, Bennett BD, Joshi AD et al (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70:8981–8987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391

    CAS  PubMed  Google Scholar 

  81. Takano T, Lin JH, Arcuino G et al (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7:1010–1015

    Article  CAS  PubMed  Google Scholar 

  82. Lyons SA, Chung WJ, Weaver AK et al (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 67:9463–9471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lobo C, Ruiz-Bellido MA, Aledo JC et al (2000) Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells. Biochem J 348:257–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lora J, Alonso FJ, Segura JA et al (2004) Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur J Biochem 271:4298–4306

    Article  CAS  PubMed  Google Scholar 

  85. Cheng T, Sudderth J, Yang C et al (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108:8674–8679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Olalla L, Gutiérrez A, Campos JA et al (2002) Nuclear localization of l-glutaminase in mammalian brain. J Biol Chem 277:38939–38944

    Article  CAS  PubMed  Google Scholar 

  87. Szeliga M, Obara-Michlewska M, Matyja E et al (2009) Transfection with liver-type glutaminase (LGA) cDNA alteres gene expression and reduces viability, migration and proliferation of T98G glioma cells. Glia 57:1014–1023

    Article  PubMed  Google Scholar 

  88. Liu J, Zhang C, Lin M et al (2014) Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma. Oncotarget 5:2635–2647

    Article  PubMed  PubMed Central  Google Scholar 

  89. Szeliga M, Bogacińska-Karaś M, Różycka A et al (2013) Silencing of GLS and overexpression of GLS2 genes cooperate in decreasing the proliferation and viability of glioblastoma cells. Tumour Biol 35:1855–1862

    Article  PubMed  PubMed Central  Google Scholar 

  90. Martín-Rufián M, Nascimento-Gomes R, Higuero A et al (2014) Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. J Mol Med 92:277–290

    Article  PubMed  Google Scholar 

  91. Gross MI, Demo SD, Dennison JB et al (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 13:890–901

    Article  CAS  PubMed  Google Scholar 

  92. Thomas AG, Rojas C, Tanega C et al (2013) Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem Biophys Res Commun 438:243–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Herranz D, Ambesi-Impiombato A, Sudderth J et al (2015) Metabolic reprograming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia. Nat Med 21:1182–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tanaka K, Sasayama T, Irino Y et al (2016) Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 125:1591–1602

    Article  Google Scholar 

Download references

Acknowledgements

The work performed by the Canceromics group and cited in this article was financially supported by Grant SAF2015-64501-R from the Spanish Ministry of Economy and Competitivity (to JM and JMM) and Grant RD12/0028/0013 (JM) of the RTA RETICS network from the Spanish Health Institute Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Márquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márquez, J., Alonso, F.J., Matés, J.M. et al. Glutamine Addiction In Gliomas. Neurochem Res 42, 1735–1746 (2017). https://doi.org/10.1007/s11064-017-2212-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2212-1

Keywords

Navigation