Skip to main content
Log in

Ensemble average propagator-based detection of microstructural alterations after stroke

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

New analytical reconstruction techniques of diffusion weighted signal have been proposed. A previous work evidenced the exploitability of some indices derived from the simple harmonic oscillator-based reconstruction and estimation (3D-SHORE) model as numerical biomarkers of neural plasticity after stroke. Here, the analysis is extended to two additional indices: return to the plane/origin (RTPP/RTOP) probabilities. Moreover, several motor networks were introduced and the results were analyzed at different time scales.

Methods

Ten patients underwent three diffusion spectrum imaging (DSI) scans [1 week (tp1), 1 month (tp2) and 6 months (tp3) after stroke]. Ten matched controls underwent two DSI scans 1 month apart. 3D-SHORE was used for reconstructing the signal and the microstructural indices were derived. Tract-based analysis was performed along motor cortical, subcortical and transcallosal networks in the contralesional area.

Results

The optimal intra-class correlation coefficient (ICC) was obtained in the subcortical loop for propagator anisotropy (ICC \(=\) 0.96), followed by generalized fractional anisotropy (ICC \(=\) 0.94). The new indices reached the highest stability in the transcallosal network and performed well in the cortical and subcortical networks with the exception of RTOP in the cortical loop (ICC \(=\) 0.59). They allowed discriminating patients from controls at the majority of the timescales. Finally, the regression model using indices calculated along the subcortical loop at tp1 resulted in the best prediction of clinical outcome.

Conclusions

The whole set of microstructural indices provide measurements featuring high precision. The new indices allow discriminating patients from controls in all networks, except for RTPP in the cortical loop. Moreover, the 3D-SHORE indices in subcortical connections constitute a good regression model for predicting the clinical outcome at 6 months, supporting their suitability as numerical biomarkers for neuronal plasticity after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623

    Article  CAS  PubMed  Google Scholar 

  2. Dijkhuizen RM, Nicolay K (2003) Magnetic resonance imaging in experimental models of brain disorders. J Cereb Blood Flow Metab 23(12):1383–1402

    Article  PubMed  Google Scholar 

  3. Mountz JM, Liu HG, Deutsch G (2003) Neuroimaging in cerebrovascular disorders: measurement of cerebral physiology after stroke and assessment of stroke recovery. Semin Nucl Med 33(1):56–76

    Article  PubMed  Google Scholar 

  4. Rehme AK, Grefkes C (2013) Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 591(Pt 1):17–31

    Article  CAS  PubMed  Google Scholar 

  5. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31:463–472

    Article  CAS  PubMed  Google Scholar 

  6. Riecker A, Groschel K, Ackermann H, Schnaudigel S, Kassubek J, Kastrup A (2010) The role of the unaffected hemisphere in motor recovery after stroke. Hum Brain Mapp 31:1017–1029

    Article  PubMed  Google Scholar 

  7. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitutdinal fMRI study. Brain 126:2476–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buffon F, Molko N, Herv D, Porcher R, Denghien I, Pappata S, Le Bihan D, Bousser MG, Chabriat H (2005) Longitudinal diffusion changes in cerebral hemispheres after MCA infarcts. J Cereb Blood Flow Metab 25:641–650

    Article  PubMed  Google Scholar 

  9. Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, Waldvogel D, Wittenberg GF, Ishii K, Cohen LG, Hallett M (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129(Pt 3):791–808

    Article  PubMed  Google Scholar 

  10. Crofts JJ, Higham DJ, Bosnell R, Jbabdi S, Matthews PM, Behrens TE, Johansen-Berg H (2011) Network analysis detects changes in the contralesional hemisphere following stroke. Neuroimage 54(1):161–169

    Article  CAS  PubMed  Google Scholar 

  11. Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, Makris N (2009) Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp 30(11):3461–3474

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moseley M, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland M, Weinstein P (1990b) Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2-weighted MRI and spectroscopy. Magn Reson Med 14:330–346

    Article  CAS  PubMed  Google Scholar 

  13. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54(6):1377–1386

    Article  PubMed  Google Scholar 

  14. Granziera C, Daducci A, Meskaldji DE, Roche A, Maeder P, Michel P, Hadjikhani N, Sorensen AG, Frackowiak RS, Thiran JP, Meuli R, Krueger G (2012) A new early and automated MRI-based predictor of motor improvement after stroke. Neurology 79(1):39–46

    Article  PubMed  Google Scholar 

  15. Lin Y, Daducci A, Meskaldji D, Thiran J, Michel P, Meuli R, Krueger G, Menegaz G, Granziera C (2015) Quantitative analysis of myelin and axonal remodeling in the uninjured motor network after stroke. Brain Connect 5(7):401–412

    Article  PubMed  PubMed Central  Google Scholar 

  16. Özarslan E, Koay C, Shepherd T, Blackband S, Basser P (2009c) Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space MRI. Proc Intl Soc Mag Reson Med 17:1396

    Google Scholar 

  17. Brusini L, Obertino S, Zucchelli M, Boscolo Galazzo I, Krueger G, Granziera C, Menegaz G (2015) Assessment of mean apparent propagator-based indices as biomarkers of axonal remodeling after stroke. MICCAI 9349:199–206

    Google Scholar 

  18. Özarslan E, Koay C, Shepherd T, Komlosh M, İrfanoğlu M, Pierpaoli C, Basser P (2013) Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78:16–32

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zucchelli M, Brusini L, Mendez CA, Daducci A, Granziera C, Menegaz G (2016) What lies beneath? Diffusion EAP-based study of brain tissue microstructure. Med Image Anal 32:145–156

    Article  PubMed  Google Scholar 

  20. Fleiss JL (1981) Methods for rates and proportions, 2nd edn. Wiley, New York

    Google Scholar 

  21. Bar-Shir A, Avram L, Özarslan E, Basser PJ, Cohen Y (2008) The effect of the diffusion time and pulse gradient duration ratio on the diffraction pattern and the structural information estimated from q-space diffusion MR: experiments and simulations. J Magn Reson 194:230–236

    Article  CAS  PubMed  Google Scholar 

  22. Avram L, Özarslan E, Assaf Y, Bar-Shir A, Cohen Y, Basser PJ (2008) Three-dimensional water diffusion in impermeable cylindrical tubes: theory versus experiments. NMR Biomed 21:888–898

    Article  PubMed  Google Scholar 

  23. Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J, Wald LL, McNab JA (2015) The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. Neuroimage 106:464–472

    Article  PubMed  Google Scholar 

  24. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koch P, Schulz R, Hummel FC (2016) Structural connectivity analyses in motor recovery research after stroke. Ann Clin Transl Neurol 3(3):233–244

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schulz R, Gerloff C, Hummel FC (2013) Non-invasive brain stimulation in neurological diseases. Neuropharmacology 64:579–587

    Article  CAS  PubMed  Google Scholar 

  27. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C (2006) The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26:6096–6102

    Article  CAS  PubMed  Google Scholar 

  28. Granziera C, D’Arceuil H, Zai L, Magistretti PJ, Sorensen AG, de Crespigny AJ (2007) Long-term monitoring of poststroke plasticity after transient cerebral ischemia in mice using in vivo and ex vivo diffusion tensor MRI. Open Neuroimag J 1:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ueno Y, Chopp M, Zhang L, Buller B, Liu Z, Lehman N, Liu X, Zhang Y, Roberts C, Zhang Z (2012) Axonal outgrowth and dendritic plasticity in the cortical peri-infarct area after experimental stroke. Stroke 43(8):2221–2228

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza Brusini.

Ethics declarations

Conflict of interest

None.

Informed consent

This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 185 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brusini, L., Obertino, S., Galazzo, I.B. et al. Ensemble average propagator-based detection of microstructural alterations after stroke. Int J CARS 11, 1585–1597 (2016). https://doi.org/10.1007/s11548-016-1442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1442-z

Keywords

Navigation