Skip to main content

Advertisement

Log in

Spectrum and classification of inflammatory demyelinating diseases of the central nervous system

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The aim of this review is to highlight recent observations concerning the pathogenesis of acute and chronic inflammatory demyelinating diseases in the central nervous system. Without attempting to provide a didactic classification or a complete survey, we emphasize the discriminative nature of new clinical, imaging, and immunopathologic data, which, even in the absence of specific molecular markers, modify our views about the nosologic relations among these overlapping clinicopathologic entities. In the light of new findings, multiple sclerosis may represent a spectrum of demyelinating diseases rather than a single entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lublin FD, Reingold SC: Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 1996, 46:907–911.

    PubMed  CAS  Google Scholar 

  2. Cottrell DA, Kremenchutzky M, Rice GP, et al.: The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain 1999, 122:625–639.

    Article  PubMed  Google Scholar 

  3. Kremenchutzky M, Cottrell D, Rice G, et al.: The natural history of multiple sclerosis: a geographically based study. 7. Progressive-relapsing and relapsing-progressive multiple sclerosis: a re-evaluation. Brain 1999, 122:1941–1949.

    Article  PubMed  Google Scholar 

  4. Thompson AJ, Montalban X, Barkhof F, et al.: Diagnostic criteria for primary progressive multiple sclerosis: a position paper. Neurology 2000, 47:831–835.

    CAS  Google Scholar 

  5. Richert DN, Frank JA: Magnetization transfer imaging to monitor clinical trials in multiple sclerois. Neurology 1999, 53(suppl):S29-S32. This paper provides a concise description of new magnetic resonance methods and their application in clinical trials.

    Article  PubMed  CAS  Google Scholar 

  6. Cercignani M, Iannucci G, Rocca MA, et al.: Pathological damage in MS assesed by diffusion-weighted and magnetization transfer MRI. Neurology 2000, 54:1139–1144. This paper compares diffusion characteristics of multiple sclerosis lesions, normal appearing white matter, and normal white matter of control patients, and investigates the correlations between magnetization transfer ratio values and diffusion of water molecules by diffusion weighted imaging.

    PubMed  CAS  Google Scholar 

  7. Van Walderveen MA, Barkfof F, Pouwels PJ, et al.: Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol 1999, 46:79–87. This study demonstrates severe axonal damage in severely hypointense T1 lesions, and shows that T1-relaxation time correlates with the concentration of N-acetyl aspartate in both multiple sclerosis lesions and normal appearing white matter.

    Article  PubMed  Google Scholar 

  8. Filippi M, Campi A, Dousset V, et al.: A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 1995, 45:478–482.

    PubMed  CAS  Google Scholar 

  9. Filippi M, Rocca MA, Minicucci L, et al.: Magnetization transfer imaging of patients with definite MS and negative conventional MRI. Neurology 1999, 52:845–848.

    PubMed  CAS  Google Scholar 

  10. Goodkin DE, Rooney WD, Sloan R, et al.: A serial study of new lesions and the white matter from which they arise. Neurology 1998, 51:1689–1697.

    PubMed  CAS  Google Scholar 

  11. Filippi M, Rocca MA, Martino G, et al.: Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerois. Ann Neurol 1998, 43:809–814.

    Article  PubMed  CAS  Google Scholar 

  12. Narayan S, Fu L, Pioro E, et al.: Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions. Ann Neurol 1997, 41:385–391.

    Article  Google Scholar 

  13. Fu L, Matthews PM, De Stefano N, et al.: Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 1998, 121:103–113.

    Article  PubMed  Google Scholar 

  14. Tortorella C, Viti B, Bozzali M, et al.: A magnetization transfer histogram study of normal-appearing brain tissue in MS. Neurology 2000, 54:186–193.

    Article  PubMed  CAS  Google Scholar 

  15. Kermode AG, Thompson AJ, Tofts P, et al.: Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenic and clinical implications. Brain 1990, 113:1477–1499.

    Article  PubMed  Google Scholar 

  16. Silver NC, Lai M, Symms MR, et al.: Serial magnetization transfer imaging to characterize the early evolution of new MS lesions. Neurology 1998, 51:758–764.

    PubMed  CAS  Google Scholar 

  17. Davie CA, Silver NC, Barker GJ, et al.: Does the extent of axonal loss and demyelination from chronic lesions in multiple sclerosis correlate with the clinical subgroup? J Neurol Neurosurg Psychol 1999, 67:710–715.

    CAS  Google Scholar 

  18. Truyen L, van Waesberge JH, van Walderveen MA, et al.: Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 1996, 47:1469–1476.

    PubMed  CAS  Google Scholar 

  19. Simon JH, Jacobs LD, Campion MK, et al.: A longitudinal study of brain atrophy in relapsing multiple sclerosis. The multiple sclerosis Collaborative Research Group. Neurology 1999, 53:139–148.

    PubMed  CAS  Google Scholar 

  20. Simon JH, Lull J, Rudick RA, et al.: A longitudinal study of T1 hypointense lesions in relaping MS. MSCRG trial of interferon b-1a. Neurology 2000, 55:185–192.

    PubMed  CAS  Google Scholar 

  21. Bruck W, Bitsch A, Kolenda H, et al.: Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 1997, 42:783–793.

    Article  PubMed  CAS  Google Scholar 

  22. Chataway J, Feakes R, Coraddu F, et al.: The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen. Brain 1998, 121:1869–1887.

    Article  PubMed  Google Scholar 

  23. Lucchinetti C, Bruck W, Parisi J, et al.: Heterogeneity of multiple sclerosis lesions: implication for the pathognesis of demyelination. Ann Neurol 2000, 47:707–717. Studying a large series of biopsy and autopsy specimens with acute demyelinating lesions of multiple sclerosis, the authors describe four distinct patterns of demyelination. The four patterns were seen with interindividual heterogeneity, but with a relative intraindividual consistency.

    Article  PubMed  CAS  Google Scholar 

  24. Scolding N, Franklin R, Stevens S, et al.: Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 1998, 121:2221–2228.

    Article  PubMed  Google Scholar 

  25. Wolswijk G: Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 2000, 123:105–115.

    Article  PubMed  Google Scholar 

  26. Holz A, Bielekova B, Martin R, Oldstone MB: Myelinassociated oligodendrocytic basic protein: identification of an encephalitogenic epitope and association with multiple sclerosis. J Immunol 2000, 164:1103–1109.

    PubMed  CAS  Google Scholar 

  27. Bielekova B, Goodwin B, Richert N, et al.: Antigen-specific immunomodulation confirms the encephalitogenic potential of myelin basic protein peptide (83-99) in multiple sclerosis. Neurology 2000, 3(suppl):A148.

    Article  Google Scholar 

  28. Sabelko-Downes KA, Russel JH, Cross AH: Role of Fas-FasL interactions in the pathogenesis and regulation of autoimmune demyelinating disease. J Neuroimmunol 1999, 100:42–52. Study shows that interaction between the Fas death receptor and its ligand results in apoptotic destruction of the Fas-expressing target.

    Article  PubMed  CAS  Google Scholar 

  29. D’Souza SD, Bonetti B, Balasingam V, et al.: Multiple sclerosis—Fas signaling in oligodendrocyte cell death. J Exp Med 1996, 184:2361–2370.

    Article  PubMed  CAS  Google Scholar 

  30. Kerschensteiner M, Gallmeier E, Behrens L, et al.: Activated T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999, 189:865–870.

    Article  PubMed  CAS  Google Scholar 

  31. Archelos JJ, Storch MK, Hartung HP: The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol 2000, 47:694–706.

    Article  PubMed  CAS  Google Scholar 

  32. Baranzini SE, Jeong MC, Butunoi C, et al.: B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 1999, 163:5133–5144.

    PubMed  CAS  Google Scholar 

  33. Genain CP, Canella B, Hauser SL, Raine CS: Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 1999, 5:170–175. This study elegantly demonstrates that humoral factors are involved in the effector mechanism of immune-mediated demyelination, and that myelin oligodendrocyte glycoprotein may be an important autoantigen in acute lesions of multiple slcerosis.

    Article  PubMed  CAS  Google Scholar 

  34. Raine CS, Canella B, Hauser SL, Genain CP: Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 1999, 46:144–160.

    Article  PubMed  CAS  Google Scholar 

  35. Storch MK, Stefferl A, Brehm U, et al.: Autoimmunity to myelin oligodendrocyte glycoprotein (MOG) in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 1998, 8:681–694.

    Article  PubMed  CAS  Google Scholar 

  36. Kieseier BC, Storch MK, Archelos JJ, et al.: Effector pathways in immune mediated central nervous system demyelination. Review. Curr Opin Neurol 1999, 12:323–336.

    Article  CAS  Google Scholar 

  37. Pitt D, Werner P, Raine CS: Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 2000, 6:67–70.

    Article  PubMed  CAS  Google Scholar 

  38. Smith T, Groom A, Zhu B, Turski L: Autoimmune encephalomyelitis ameloriated by AMPA antagonists. Nat Med 2000, 6:62–66.

    Article  PubMed  CAS  Google Scholar 

  39. Devic E: Myelite subaigue compliquee de neurite optique. Bull Med 1894, 8:1033–1034.

    Google Scholar 

  40. Gault F: De la neuromyelite optique aigue. Lyon: Thesis, 1894.

  41. Mandler RN, Davis LE, Douglas RJ, Kornfeld M. Devic’s neuromyelitis optica: A clinicopathological study of 8 patients. Ann Neurol 1993; 34:162–168.

    Article  PubMed  CAS  Google Scholar 

  42. Wingerchuck DM, Hogancamp WF, O’Brien PC, Weinshenker BG: The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 1999, 53:1107–1114. The authors provide a set of new criteria to distinguish Devic’s disease from multiple sclerosis.

    Google Scholar 

  43. O’Riordan, Gallagher HL, Thompson AJ, et al.: Clinical, CSF, and MRI findings in Devic’s neuromyelitis optica. J Neurol Neurosurg Psychol 1996, 60:382–387.

    Article  CAS  Google Scholar 

  44. Margaux J, Hayem G, Meyer O, Kahn MF: Systemic lupus erythematosus with optical neuromyelitis (Devic’s syndrome). A case with a 35-year follow-up. Revue Du Rhumatisme 1999, 66:102–105.

    PubMed  CAS  Google Scholar 

  45. Filippi M, Rocca MA, Moiola L, et al.: MRI and magnetization transfer imaging changes in the brain and cervical cord of patients with Devic’s neuromyelitis optica. Neurology 1999, 53:1705–1712.

    PubMed  CAS  Google Scholar 

  46. Lucchinetti C, Mandler R, Weinshenker B, et al.: Humoral mechanism in the pathogenesis of Devic’s neuromyelitis optica. Neurology 2000, (suppl 3):A259.

  47. Kuroiwa Y: Neuromyelitis optica (Devic’s disease, Devic’s syndrome). Handbook of clinical neurology. 1985, 3:397–408.

    Google Scholar 

  48. Kira J, Takayuki K, Nishimura Y, et al.: Western versus Asian types of multiple sclerosis: immunogenetically and clinically distinct disorders. Ann Neurol 1996, 40:569–574.

    Article  PubMed  CAS  Google Scholar 

  49. Collard RC, Koehler RP, Mattson DH: Frequency and significance of antinuclear antibodies in multiple sclerosis. Neurology 1997, 49:857–861.

    PubMed  CAS  Google Scholar 

  50. Lu F, Kalman B: Autoreactive IgG to intracellular proteins in sera of MS patients. J Neuroimmunol 1999, 99:72–81.

    Article  PubMed  CAS  Google Scholar 

  51. von Muhlen CA, Tan EM: Autoantibodies in the diagnosis of systemic rheumatic diseases. Sem Arthritis Rheum 1995, 24:323–358.

    Article  Google Scholar 

  52. Becker KG, Simon RM, Bailey-Wilson JE, et al.: Clustering of non-major histocompatibility complex susceptibility loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998, 95:9979–9984.

    Article  PubMed  CAS  Google Scholar 

  53. Karussis D, Leker RR, Ashkenazi A, Abramsky O: A subgroup of multiple sclerosis patients with anticardiolipin antibodies and unusual clinical manifestations: do they represent a new nosological entity? Ann Neurol 1998, 44:629–634.

    Article  PubMed  CAS  Google Scholar 

  54. Campi A, Filippi M, Comi G, Scotti G: Recurrent acute transverse myelopathy with anticardiolipin antibodies. Am J Neuroradiol 1998, 19:781–786.

    PubMed  CAS  Google Scholar 

  55. Rovaris M, Viti B, Ciboddo G, et al.: Brain involvement in systemic immune mediated diseases: magnetic resonance and magnetization transfer imaging study. Neurol Neurosurg Psychol 2000, 68:170–177.

    Article  CAS  Google Scholar 

  56. Cuadrado M, Khamashta MA, Ballesteros A, et al.: Can neurologic manifestations of Hughes (antiphospholipid) syndrome be distinguished from multiple sclerosis? Analysis of 27 patients and review of the literature. Medicine 2000, 79:57–68.

    Article  PubMed  CAS  Google Scholar 

  57. Scott TF, Hess D, Brillman J: Antiphospholipid antibody syndrome mimicking multiple sclerosis clinically and by magnetic resonance imaging. Arch Intern Med 1994, 154:917–920.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalman, B., Lublin, F.D. Spectrum and classification of inflammatory demyelinating diseases of the central nervous system. Curr Neurol Neurosci Rep 1, 249–256 (2001). https://doi.org/10.1007/s11910-001-0027-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-001-0027-5

Keywords

Navigation