Skip to main content

Advertisement

Log in

Imaging of neurogenetic and neurometabolic disorders of childhood

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) has emerged as a powerful tool in the study of normal and abnormal brain structure, function, and biochemistry. In particular, functional MRI has come into its own as a tool to study normal and abnormal brain functions such as learning, memory, and motor learning, as well as delineation of neurogenetic cognitive phenotypes. White matter microstructure can be studied using diffusion tensor imaging, which may allow abnormal white matter to be visualized prior to abnormalities on anatomic MRI. Magnetic resonance spectroscopy, a noninvasive method to study brain biochemistry, may allow for the delineation of regional metabolic changes as a result of disease progression and/or therapeutic intervention. With MRI techniques, one can investigate the relationship between structure, function, genes, and behavior. This report discusses the research applications of MRI to the study of neurogenetic disorders of childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hashemi RJ, Bradley WG Jr: MRI the Basics. Baltimore: Lippincott, Williams and Wilkins; 1997.

    Google Scholar 

  2. Basser PJ: Inferring micro structural features and the physiological state of tissues from diffusion-weighted images. Nucl Magn Reson Biomed 1995, 8:333–344.

    CAS  Google Scholar 

  3. Huppi PS, Maier SE, Peled S, et al.: Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 1998, 44:584–590.

    Article  PubMed  CAS  Google Scholar 

  4. Neil JJ, Shiran SI, McKinstry RC, et al.: Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1998, 209:57–66.

    PubMed  CAS  Google Scholar 

  5. Moser HW, Loes DJ, Melhem ER, et al.: X-Linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics 2000, 31:227–239.

    Article  PubMed  CAS  Google Scholar 

  6. Eichler FS, Itoh R, Barker PB, et al.: Proton MR spectroscopic and diffusion tensor brain MR imaging in x-linked adrenoleukodystrophy: initial experience. Radiology 2002, 225:245–252. This paper explores the use of DTI and MRS in adrenoleukodystrophy as a means to assess biomarkers of disease despite normal appearing white matter on anatomic magnetic resonance images.

    Article  PubMed  Google Scholar 

  7. Wieshmann UC, Clark CA, Symms MR, et al.: Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging. Magn Reson Imaging 1999, 17:1269–1274.

    Article  PubMed  CAS  Google Scholar 

  8. Sener RN: Phenylketonuria: diffusion magnetic resonance imaging and proton magnetic resonance spectroscopy. J Comput Assist Tomogr 2003, 27:541–543.

    Article  PubMed  Google Scholar 

  9. Albayram S, Melhem ER, Mori S, et al.: Holoprosencephaly in children: diffusion tensor mr imaging of white matter tracts of the brainstem—initial experience. Radiology 2002, 223:645–651.

    Article  PubMed  Google Scholar 

  10. Logothetis NK, Puals J, Augath M: Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 12:150–157. This study demonstrates that blood oxygen level-dependent signals are derived from synaptic activity.

    Article  Google Scholar 

  11. Cohen JS, Bookheimer SY: Localization of brain function using magnetic resonance imaging. Trends Neurosci 1994, 17:288–297.

    Google Scholar 

  12. Bookheimer SY, Strojwas MH, Cohen MS, et al.: Patterns of brain activation in people at risk for alzheimer’s disease. N Engl J Med 2000, 343:450–456.

    Article  PubMed  CAS  Google Scholar 

  13. Reiss AL, Eliez S, Schmitt JE, et al.: Brain imaging in neurogenetic conditions: realizing the potential of behavioral neurogenetics research. Ment Retard Dev Disabil Res Rev 2000, 6:186–197. This paper explores the potential of MRI modalities in establishing the genetic component of many behavioral parameters.

    Article  PubMed  CAS  Google Scholar 

  14. Reiss A, Freund L: Behavioral neurogenetics research: a method for analyzing linkages among gene, brain, and behavior. In Advancing Research on Developmental Plasticity: Integrating the Behavioral Science and Neurosciences of Mental Health. Edited by Hann D, Huffman K, Kederhandler I, Meinecke D. Bethesda, MD: NIH; 2001:83–95.

    Google Scholar 

  15. Jin P, Warren ST: New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem Sci 2001, 28:152–158.

    Article  CAS  Google Scholar 

  16. Hagerman RJ, Hagerman PJ: The Fragile X permutation: into the phenotypic fold. Curr Opin Genet Dev 2002, 12:278–283.

    Article  PubMed  CAS  Google Scholar 

  17. Eliez S, Blasey CM, Freund LS, et al.: Brain anatomy, gender, and IQ in children and adolescents with fragile X syndrome. Brain 2001, 124:1610–1618.

    Article  PubMed  CAS  Google Scholar 

  18. Barnea-Goraly N, Eliez S, Hedeus M, et al.: White matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor imaging. Am J Med Genet 2003, 118B:81–88.

    Article  PubMed  Google Scholar 

  19. Shprintzen RJ: Velo-cardio-facial syndrome: a distinctive behavioral phenotype. Ment Retard Dev Disabil Res Rev 2000, 6:142–147.

    Article  PubMed  CAS  Google Scholar 

  20. van Amelsvoort T, Daly G, Robertson D, et al.: Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velocardiofacial syndrome. Br J Psychiatry 2001, 178:412–419.

    Article  PubMed  Google Scholar 

  21. Eliez S, Blasey CM, Menon V, et al.: Functional brain imaging study of mathematical reasoning abilities in velocardiofacial syndrome (del22q11.2). Genet Med 2001, 3:49–55.

    PubMed  CAS  Google Scholar 

  22. Donnai D, Karmiloff-Smith A: Williams’s syndrome from genotype through to the cognitive phenotype. Am J Med Genet 2000, 97:164–171.

    Article  PubMed  CAS  Google Scholar 

  23. Schmitt JE, Watts K, Eliez S, et al.: Increased gyrification in Williams’s syndrome: evidence using 3D MRI methods. Dev Med Child Neurol 2002, 44:292–295.

    Article  PubMed  Google Scholar 

  24. Levitan DJ, Menon V, Schmitt JE, et al.: Neural correlates of auditory perception in Williams syndrome: an fMRI study. Neuroimage 2003, 18:74–82.

    Article  Google Scholar 

  25. Rae C, Karmiloff-Smith A, Lee MA, et al.: Brain biochemistry in Williams’s syndrome: evidence for a role of the cerebellum in cognition? Neurology 1998, 51:8–9.

    Google Scholar 

  26. Nihhuls-Vandersanden MW, Eling PA, Otten BJ: A review of neuropsychological and motor studies in Turner syndrome. Neurosci Biobehav Rev 2003, 27:329–338.

    Article  Google Scholar 

  27. Fryer SL, Kwon H, Eliez S, Reiss AL: Corpus callosum and posterior fossa development in monozygotic females: a morphometric MRI study of Turner syndrome. Dev Med Child Neurol 2003, 45:320–324.

    Article  PubMed  Google Scholar 

  28. Tamm L, Menon V, Reiss AL: Abnormal prefrontal cortex function during response inhibition in Turner syndrome: functional magnetic resonance imaging evidence. Biol Psychiatry 2003, 53:107–111.

    Article  PubMed  Google Scholar 

  29. Pfeuffer J, Tkac I, Provencher SW, Gruetter R: Toward an in vivo neurochemical profile: Quantification of 18 metabolites in short-echo-time (1) H NMR spectra of the rat brain. J Magn Reson 1999, 14:104–120.

    Article  Google Scholar 

  30. Tkac I, Andersen P, Adriany G, et al.: In vivo 1H NMR Spectroscopy of the human brain at 7T. Magn Reson Med 2001, 46:451–456.

    Article  PubMed  CAS  Google Scholar 

  31. deGrauw TJ, Cecil KM, Byars AW, Salomons GS: The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 2003, 244:45–48.

    Article  PubMed  CAS  Google Scholar 

  32. Weglage J, Wiedermann D, Denecke J, et al.: Individual blood-brain barrier phenylalanine transport determines clinical outcome in phenylketonuria. J Inherit Metab Dis 2002, 25:431–436.

    Article  PubMed  CAS  Google Scholar 

  33. Jan W, Zimmerman RA, Wang ZJ, et al.: MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 2003, 45:393–399. This paper nicely demonstrates the utility of MRS in monitoring disease progression and potential therapy.

    Article  PubMed  Google Scholar 

  34. Choi CG, Yoo HW: Localized proton MR spectroscopy in infants with urea cycle defect. Am J Neuroradiol 2001, 22:834–837.

    PubMed  CAS  Google Scholar 

  35. Takanashi J, Kurihara A, Tomita M, et al.: Distinctly abnormal brain metabolism in late onset ornithine transcarbamylase deficiency. Neurology 2002, 59:210–214.

    PubMed  CAS  Google Scholar 

  36. Stockler S, Hanefeld F, Frahm J, et al.: Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 1996, 348:789–790.

    Article  PubMed  CAS  Google Scholar 

  37. Kimura S, Ohtuki N, Nezu A, et al.: Clinical and radiologic improvements in mitochondrial encephalomyelopathy following sodium dichloroacetate therapy. Brain Dev 1997, 19:535–540.

    Article  PubMed  CAS  Google Scholar 

  38. Cross JH, Gadian DG, Connelly A, Leonard JV: Proton magnetic resonance spectroscopy studies in lactic acidosis and mitochondrial disorders. J Inherit Metab Dis 1993, 16:800–811.

    Article  PubMed  CAS  Google Scholar 

  39. Sylvain M, Mitchel GA, Shevell MI, et al.: Muscle and brain magnetic resonance spectroscopy (MRS) and imaging (MRI) in children with Leigh’s syndrome associated with cytochrome C oxidase deficiency: dependence on findings on clinical status. Ann Neurol 1993, 54:464.

    Google Scholar 

  40. Harada M, Tanouchi M, Arai K, et al.: Therapeutic efficacy of a case of pyruvate dehydrogenase complex deficiency monitored by localized proton magnetic resonance spectroscopy. Magn Reson Imag 1996, 14:129–133.

    Article  CAS  Google Scholar 

  41. Shevell MI, Didomenicantonio G, Sylvain M, et al.: Glutaric academia type II: neuroimaging and spectroscopy evidence for developmental encephalopmyopathy. Pediatr Neurol 1995, 12:350–353.

    Article  PubMed  CAS  Google Scholar 

  42. Lin DD, Crawford TO, Barker PB: Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease. Am J Neuroradiol 2003, 24:33–41. This paper demonstrates regional variations in lactate concentration in patients with suspected or confirmed mitochondrial disorders and emphasizes the effects of voxel/anatomic selection and timing of the course of illness as factors contributing to whether or not lactate may be measured.

    PubMed  Google Scholar 

  43. Weglage J, Wiedermann D, Denecke J, et al.: Individual bloodbrain barrier phenylalanine transport in siblings with classical phenylketonuria. J Inherit Metab Dis 2002, 25:431–436.

    Article  PubMed  CAS  Google Scholar 

  44. Wittsack HJ, Kugel H, Roth B, Heindel W: Quantitative measurements with localized 1H MR spectroscopy in children with Canavan’s disease. J Magn Reson Imaging 1996, 6:889–893.

    Article  PubMed  CAS  Google Scholar 

  45. Yalcinkaya C, Dincer A, Gunduz, et al.: MRI and MRS in HMGCoA Lyase deficiency. Pediatr Neurol 1999, 20:375–380.

    Article  PubMed  CAS  Google Scholar 

  46. Gabis L, Parton P, Roche P, et al.: In vivo 1H magnetic resonance spectroscopic measurement of brain glycine levels in nonketotic hyperglycinemia. J Neuroimaging 2001, 11:209–211.

    Article  PubMed  CAS  Google Scholar 

  47. Viola A, Chabrol B, Nicoli F, et al.: Magnetic resonance spectroscopy study of glycine pathways in nonketotic hyperglycinemia. Pediatr Res 2002, 52:292–300.

    PubMed  CAS  Google Scholar 

  48. Jakobs C, Jaeken J, Gibson KM, et al.: Inherited disorders of GABA metabolism. J Inherit Metab Dis 1993, 16:704–715.

    Article  PubMed  CAS  Google Scholar 

  49. Khong PL, Lam CW, Ooi CG, et al.: Magnetic resonance spectroscopy and analysis of MECP2 in Rett syndrome. Pediatr Neurol 2002, 26:205–209.

    Article  PubMed  Google Scholar 

  50. Pan JW, Lane JB, Hetherington H, Percy AK: Rett syndrome: 1H spectroscopic imaging at 4.1 Tesla. J Child Neurol 1999, 14:524–528.

    PubMed  CAS  Google Scholar 

  51. Bluml S, Philippart M, Schiffman R, et al.: Membrane phospholipids and high energy metabolites in childhood ataxia and CNS hypomyelination. Neurology 2003, 61:648–654.

    PubMed  CAS  Google Scholar 

  52. Gillies RJ, Barry JA, Ross BD: In vitro and in vivo 13C and 31P NMR analyses of phosphocholine metabolism in rat glioma cells. Magn Reson Med 1994, 32:310–318.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gropman, A. Imaging of neurogenetic and neurometabolic disorders of childhood. Curr Neurol Neurosci Rep 4, 139–146 (2004). https://doi.org/10.1007/s11910-004-0028-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-004-0028-2

Keywords

Navigation