Skip to main content

Advertisement

Log in

The Role of CT and MRI in the Emergency Evaluation of Persons with Suspected Stroke

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

As a growing number of therapeutic treatment options for acute stroke are being introduced, multimodal acute neuroimaging is assuming a growing role in the initial evaluation and management of patients. Multimodal neuroimaging, using either a CT or MRI approach, can identify the type, location, and severity of the lesion (ischemia or hemorrhage); the status of the cerebral vasculature; the status of cerebral perfusion; and the existence and extent of the ischemic penumbra. Both acute and long-term treatment decisions for stroke patients can then be optimally guided by this information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rowley HA: The four Ps of acute stroke imaging: parenchyma, pipes, perfusion, and penumbra. AJNR Am J Neuroradiol 2001, 22:599–601.

    CAS  PubMed  Google Scholar 

  2. Wintermark M, Flanders AE, Velthuis B, et al.: Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006, 37:979–985.

    Article  PubMed  Google Scholar 

  3. Tomsick TA, Brott TG, Chambers AA, et al.: Hyperdense middle cerebral artery sign on CT: efficacy in detecting middle cerebral artery thrombosis. AJNR Am J Neuroradiol 1990, 11:473–477.

    CAS  PubMed  Google Scholar 

  4. Lansberg MG, Albers GW, Beaulieu C, Marks MP: Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology 2000, 54:1557–1561.

    CAS  PubMed  Google Scholar 

  5. Patel SC, Levine SR, Tilley BC, et al.: Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. JAMA 2001, 286:2830–2838.

    Article  CAS  PubMed  Google Scholar 

  6. Roberts HC, Dillon WP, Furlan AJ, et al.: Computed tomographic findings in patients undergoing intra-arterial thrombolysis for acute ischemic stroke due to middle cerebral artery occlusion: results from the PROACT II trial. Stroke 2002, 33:1557–1565.

    Article  PubMed  Google Scholar 

  7. von Kummer R, Bourquain H, Bastianello S, et al.: Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology 2001, 219:95–100.

    Google Scholar 

  8. Larrue V, von Kummer RR, Muller A, Bluhmki E: Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian acute stroke study (ECASS II). Stroke 2001, 32:438–441.

    CAS  PubMed  Google Scholar 

  9. Hacke W, Kaste M, Fieschi C, et al.: Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 1995, 274:1017–1025.

    Article  CAS  PubMed  Google Scholar 

  10. Wardlaw JM, Mielke O: Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment—systematic review. Radiology 2005, 235:444–453.

    Article  PubMed  Google Scholar 

  11. Barber PA, Demchuk AM, Zhang J, Buchan AM: Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 2000, 355:1670–1674.

    Article  CAS  PubMed  Google Scholar 

  12. Prestigiacomo CJ: Surgical endovascular neuroradiology in the 21st century: what lies ahead? Neurosurgery 2006, 59:S48–S55; discussion S3–S13.

    PubMed  Google Scholar 

  13. Vieco PT: CT angiography of the intracranial circulation. Neuroimaging Clin N Am 1998, 8:577–592.

    CAS  PubMed  Google Scholar 

  14. Lell MM, Anders K, Uder M, et al.: New techniques in CT angiography. Radiographics 2006, 26(Suppl 1):S45–S62.

    Article  PubMed  Google Scholar 

  15. Lev MH, Farkas J, Rodriguez VR, et al.: CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 2001, 25:520–528.

    Article  CAS  PubMed  Google Scholar 

  16. Shrier DA, Tanaka H, Numaguchi Y, et al.: CT angiography in the evaluation of acute stroke. AJNR Am J Neuroradiol 1997, 18:1011–1020.

    CAS  PubMed  Google Scholar 

  17. Tan JC, Dillon WP, Liu S, et al.: Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 2007, 61:533–543.

    Article  PubMed  Google Scholar 

  18. Zaidat OO, Suarez JI, Santillan C, et al.: Response to intra-arterial and combined intravenous and intra-arterial thrombolytic therapy in patients with distal internal carotid artery occlusion. Stroke 2002, 33:1821–1826.

    Article  CAS  PubMed  Google Scholar 

  19. Wintermark M, Reichhart M, Cuisenaire O, et al.: Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002, 33:2025–2031.

    Article  CAS  PubMed  Google Scholar 

  20. Wintermark M, Reichhart M, Thiran JP, et al.: Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002, 51:417–432.

    Article  PubMed  Google Scholar 

  21. Latchaw RE, Yonas H, Hunter GJ, et al.: Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 2003, 34:1084–1104.

    Article  PubMed  Google Scholar 

  22. Wintermark M, Maeder P, Thiran JP, et al.: Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 2001, 11:1220–1230.

    Article  CAS  PubMed  Google Scholar 

  23. Schlaug G, Siewert B, Benfield A, et al.: Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 1997, 49:113–119.

    CAS  PubMed  Google Scholar 

  24. • Chalela JA, Kidwell CS, Nentwich LM, et al.: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 2007, 369:293–298. This study shows the diagnostic superiority of DWI over CT in the acute stroke setting.

    Article  PubMed  Google Scholar 

  25. Lee LJ, Kidwell CS, Alger J, et al.: Impact on stroke subtype diagnosis of early diffusion-weighted magnetic resonance imaging and magnetic resonance angiography. Stroke 2000, 31:1081–1089.

    CAS  PubMed  Google Scholar 

  26. Scarabino T, Carriero A, Giannatempo GM, et al.: Contrast-enhanced MR angiography (CE MRA) in the study of the carotid stenosis: comparison with digital subtraction angiography (DSA). J Neuroradiol 1999, 26:87–91.

    CAS  PubMed  Google Scholar 

  27. Rasanen HT, Manninen HI, Vanninen RL, et al.: Mild carotid artery atherosclerosis: assessment by 3-dimensional time-of-flight magnetic resonance angiography, with reference to intravascular ultrasound imaging and contrast angiography. Stroke 1999, 30:827–833.

    CAS  PubMed  Google Scholar 

  28. Nederkoorn PJ, van der Graaf Y, Hunink MG: Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke 2003, 34:1324–1332.

    Article  PubMed  Google Scholar 

  29. Sparacia G, Iaia A, Assadi B, Lagalla R: Perfusion CT in acute stroke: predictive value of perfusion parameters in assessing tissue viability versus infarction. Radiol Med 2007, 112:113–122.

    Article  CAS  PubMed  Google Scholar 

  30. Wintermark M, Fischbein NJ, Smith WS, et al.: Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol 2005, 26:104–112.

    PubMed  Google Scholar 

  31. Wintermark M, Meuli R, Browaeys P, et al.: Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology 2007, 68:694–697.

    Article  CAS  PubMed  Google Scholar 

  32. Kidwell CS, Alger JR, Saver JL: Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003, 34:2729–2735.

    Article  PubMed  Google Scholar 

  33. Kohrmann M, Juttler E, Fiebach JB, et al.: MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol 2006, 5:661–667.

    Article  PubMed  Google Scholar 

  34. •• Albers GW, Thijs VN, Wechsler L, et al.: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006, 60:508–517. This nonrandomized study evaluated the role of MRI in late selection of patients for treatment with IV tPA.

    Article  PubMed  Google Scholar 

  35. Kakuda W, Lansberg MG, Thijs VN, et al.: Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab 2008, 28:887–891.

    Article  PubMed  Google Scholar 

  36. Hacke W, Albers G, Al-Rawi Y, et al.: The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005, 36:66–73.

    Article  CAS  PubMed  Google Scholar 

  37. Furlan AJ, Eyding D, Albers GW, et al.: Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 2006, 37:1227–1231.

    Article  CAS  PubMed  Google Scholar 

  38. •• Davis SM, Donnan GA, Parsons MW, et al.: Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008, 7:299–309. In this randomized trial of IV tPA administered up to 6 hours after stroke onset, patients were screened with MRI.

    Article  PubMed  Google Scholar 

  39. Kidwell CS, Chalela JA, Saver JL, et al.: Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 2004, 292:1823–1830.

    Article  CAS  PubMed  Google Scholar 

  40. Cordonnier C, Al-Shahi Salman R, Wardlaw J: Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007, 130:1988–2003.

    Article  PubMed  Google Scholar 

  41. Singer OC, Humpich MC, Fiehler J, et al.; MR Stroke Study Group Investigators: Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol 2008, 63:52–60.

    Article  PubMed  Google Scholar 

  42. Lansberg MG, Thijs VN, Bammer R, et al.: Risk factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke 2007, 38:2275–2278.

    Article  CAS  PubMed  Google Scholar 

  43. Bang OY, Saver JL, Alger JR, et al.: Patterns and predictors of blood-brain barrier permeability derangements in acute ischemic stroke. Stroke 2009, 40:454–461.

    Article  PubMed  Google Scholar 

  44. Kastrup A, Groschel K, Ringer TM, et al.: Early disruption of the blood-brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke 2008, 39:2385–2387.

    Article  CAS  PubMed  Google Scholar 

  45. Broderick JP, Diringer MN, Hill MD, et al.: Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke 2007, 38:1072–1075.

    Article  CAS  PubMed  Google Scholar 

  46. Kidwell CS, Wintermark M: Imaging of intracranial haemorrhage. Lancet Neurol 2008, 7:256–267.

    Article  PubMed  Google Scholar 

  47. Wintermark M, Maeder P, Verdun FR, et al.: Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. AJNR Am J Neuroradiol 2000, 21:1881–1884.

    CAS  PubMed  Google Scholar 

  48. Smith WS, Roberts HC, Chuang NA, et al.: Safety and feasibility of a CT protocol for acute stroke: combined CT, CT angiography, and CT perfusion imaging in 53 consecutive patients. AJNR Am J Neuroradiol 2003, 24:688–690.

    PubMed  Google Scholar 

  49. US Food and Drug Administration: Information for Healthcare Professionals Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging (marketed as Magnevist, MultiHance, Omniscan, OptiMARK, ProHance). Available at http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm142884.htm. Accessed November 2009.

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea S. Kidwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidwell, C.S., Wintermark, M. The Role of CT and MRI in the Emergency Evaluation of Persons with Suspected Stroke. Curr Neurol Neurosci Rep 10, 21–28 (2010). https://doi.org/10.1007/s11910-009-0075-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-009-0075-9

Keywords

Navigation