Skip to main content

Advertisement

Log in

Advanced MRI Techniques in the Monitoring of Treatment of Gliomas

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

With advances in treatments and survival of patients with glioblastoma (GBM), it has become apparent that conventional imaging sequences have significant limitations both in terms of assessing response to treatment and monitoring disease progression. Both ‘pseudoprogression’ after chemoradiation for newly diagnosed GBM and ‘pseudoresponse’ after anti-angiogenesis treatment for relapsed GBM are well-recognised radiological entities. This in turn has led to revision of response criteria away from the standard MacDonald criteria, which depend on the two-dimensional measurement of contrast-enhancing tumour, and which have been the primary measure of radiological response for over three decades. A working party of experts published RANO (Response Assessment in Neuro-oncology Working Group) criteria in 2010 which take into account signal change on T2/FLAIR sequences as well as the contrast-enhancing component of the tumour. These have recently been modified for immune therapies, which are associated with specific issues related to the timing of radiological response. There has been increasing interest in quantification and validation of physiological and metabolic parameters in GBM over the last 10 years utilising the wide range of advanced imaging techniques available on standard MRI platforms. Previously, MRI would provide structural information only on the anatomical location of the tumour and the presence or absence of a disrupted blood-brain barrier. Advanced MRI sequences include proton magnetic resonance spectroscopy (MRS), vascular imaging (perfusion/permeability) and diffusion imaging (diffusion weighted imaging/diffusion tensor imaging) and are now routinely available. They provide biologically relevant functional, haemodynamic, cellular, metabolic and cytoarchitectural information and are being evaluated in clinical trials to determine whether they offer superior biomarkers of early treatment response than conventional imaging, when correlated with hard survival endpoints. Multiparametric imaging, incorporating different combinations of these modalities, improves accuracy over single imaging modalities but has not been widely adopted due to the amount of post-processing analysis required, lack of clinical trial data, lack of radiology training and wide variations in threshold values. New techniques including diffusion kurtosis and radiomics will offer a higher level of quantification but will require validation in clinical trial settings. Given all these considerations, it is clear that there is an urgent need to incorporate advanced techniques into clinical trial design to avoid the problems of under or over assessment of treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  2. deSouza RM, Shaweis H, Han C, et al. Has the survival of patients with glioblastoma changed over the years? Br J Cancer. 2016;114:146–50.

    Article  CAS  PubMed  Google Scholar 

  3. Metellus P, Coulibaly B, Colin C, et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol. 2010;120:719–29.

    Article  PubMed  Google Scholar 

  4. Reuter M, Gerstner ER, Rapalino O, Batchelor TT, Rosen B, Fischl B. Impact of MRI head placement on glioma response assessment. J Neurooncol. 2014;118:123–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. •• Ellingson BM, Bendzhus M, Boxerman J, et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol. 2015;17:1188–98. This recently published paper is the first to provide international consensus recommendations for glioma imaging in clinical trials, highlighting a need for standardisation that may also be relevant to clinical practice.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Young RJ, Gupta A, Shah AD, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76:1918–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol. 2013;15:515–34.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Radbruch A, Fladt J, Kickingereder P, et al. Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro Oncol. 2015;17:151–9.

    Article  PubMed  Google Scholar 

  9. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004;63:535–37.

    Article  PubMed  Google Scholar 

  10. Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:2192–97.

    Article  PubMed  Google Scholar 

  11. Da Cruz H, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011;32:1978–85.

    Article  Google Scholar 

  12. Gerstner ER, McNamara MB, Norden AD, Lafrankie D, Wen PY. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol. 2009;94:97–101.

    Article  CAS  PubMed  Google Scholar 

  13. van West SE, de Bruin HG, van de Langerijt B, Swaak-Kragten AT, van den Bent MJ, Taal W. Incidence of pseudoprogression in low-grade gliomas treated with radiotherapy. Neuro Oncol. 2016. pii: now194.

  14. Batchelor T, Sorensen A, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vredenburgh JJ, Desjardins A, Herndon 2nd JE, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722–29.

    Article  CAS  PubMed  Google Scholar 

  16. Norden AD, Young GS, Setayesh K, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 2008;70:779–87.

    Article  CAS  PubMed  Google Scholar 

  17. Narayana A, Kelly P, Golfinos J, et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J Neurosurg. 2009;110:173–80.

    Article  PubMed  Google Scholar 

  18. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in Neuro-Oncology working group. J Clin Oncol. 2010;28:1963–72.

    Article  PubMed  Google Scholar 

  19. Macdonald DR, Cascino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.

    Article  CAS  PubMed  Google Scholar 

  20. Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology. 2009;252:182–9.

    Article  PubMed  Google Scholar 

  21. Bulik M, Kazda T, Slampa P, Jancalek R. The diagnostic ability of follow-up imaging biomarkers after treatment of glioblastoma in the temozolomide era: implications from proton MR spectroscopy and apparent diffusion coefficient mapping. Biomed Res Int. 2015;2015:641023.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boxerman JL, Ellingson BM, Jeyapalan S, Elinzano H, Harris RJ, Rogg JM, Pope WB, Safran H. Longitudinal DSC-MRI for distinguishing tumor recurrence from pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol 2014.

  23. Jaspan T, Morgan PS, Warmuth-Metz M, et al. Response assessment in pediatric neuro-oncology: implementation and expansion of the RANO criteria in a randomized phase II trial of pediatric patients with newly diagnosed high-grade gliomas. AJNR Am J Neuroradiol. 2016;37:1581–87.

    Article  CAS  PubMed  Google Scholar 

  24. Okada H, Weller M, Huang R, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16:e534–42.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simon D, Fritzsche KH, Thieke C, et al. Diffusion-weighted imaging-based probabilistic segmentation of high- and low-proliferative areas in high-grade gliomas. Cancer Imaging. 2012;12:89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  26. LaViolette PS, Mickevicius NJ, Cochran EJ, et al. Precise ex vivo histological validation of heightened cellularity and diffusion-restricted necrosis in regions of dark apparent diffusion coefficient in 7 cases of high-grade glioma. Neuro Oncol. 2014;16:1599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high- grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25:201–9.

    PubMed  Google Scholar 

  28. Asao C, Korogi Y, Kitajima M, et al. Diffusion- weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:1455–60.

    PubMed  Google Scholar 

  29. Lee WJ, Choi SH, Park CK, et al. Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad Radiol. 2012;19:1353–61.

    Article  PubMed  Google Scholar 

  30. Song YS, Choi SH, Park CK, et al. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis. Korean J Radiol. 2013;14:662–72.

    Article  PubMed  PubMed Central  Google Scholar 

  31. • Chu HH, Choi SH, Ryoo I, et al. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology. 2013;269:831–40. This study examines the value of diffusion imaging to distinguish pseudoprogression from tumour, highlighting the potential benefit of high b value imaging and histogram analysis.

    Article  PubMed  Google Scholar 

  32. Sundgren PC, Fan X, Weybright P, et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging. 2006;24:1131–42.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang R, Jiang J, Zhao L, et al. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget. 2015;6(39):42380–93.

    PubMed  PubMed Central  Google Scholar 

  34. • Barajas Jr RF, Butowski NA, Phillips JJ, et al. The development of reduced diffusion following bevacizumab therapy identifies regions of recurrent disease in patients with high-grade glioma. Acad Radiol. 2016;23:1073–82. This research identified viable tumour corresponding to regions of low ADC signal following anti-angiogenic therapy by means of histological correlation.

    Article  PubMed  Google Scholar 

  35. Nguyen HS, Milbach N, Hurrell SL, Cochran E, Connelly J, Bovi A et al. Progressing bevacizumab-induced diffusion restriction is associated with coagulative necrosis surrounded by viable tumor and decreased overall survival in patients with recurrent glioblastoma. AJNR Am J Neuroradiol. 2016.

  36. Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.

    PubMed  Google Scholar 

  37. Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19:527–57.

    Article  PubMed  Google Scholar 

  38. Danchaivijitr N, Waldman AD, Tozer DJ, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247:170–8.

    Article  PubMed  Google Scholar 

  39. Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh 4th GR. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol. 2004;25:214–21.

    PubMed  Google Scholar 

  40. Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21:901–9.

    CAS  PubMed  Google Scholar 

  41. Hu LS, Baxter LC, Smith KA, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30:552–8.

    Article  CAS  PubMed  Google Scholar 

  42. Gasparetto EL, Pawlak MA, Patel SH, et al. Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology. 2009;250:887–96.

    Article  PubMed  Google Scholar 

  43. Fatterpekar GM, Galheigho D, Narayana A, Johnson G, Knopp E. Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol. 2012;198:19–26.

    Article  PubMed  Google Scholar 

  44. •• Patel P, Baradaran H, Delgado D, Askin G, Christos P, Tsiouris AJ, Gupta A. MRI perfusion imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol. 2016. This systematic meta-analysis confirms the benefit of DSC to distinguish pseudoprogression from recurrent tumour, but highlights the problem of defining a widely applicable threshold value.

  45. Kelm ZS, Korfiatis PD, Lingineni RK, Daniels JR, Buckner JC, Lachane DH et al. Variability and accuracy of different software packages for dynamic susceptibility contrast magnetic resonance imaging for distinguishing glioblastoma progression from pseudoprogression. J Med Imaging (Bellingham). 2015; 2: 026001

  46. Wang S, Martinez-Lage M, Sakai Y, et al. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol. 2016;37:28–36.

    Article  CAS  PubMed  Google Scholar 

  47. Choi SH, Jung SC, Kim KW, et al. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis. J Neurooncol. 2016;128:185–94.

    Article  CAS  PubMed  Google Scholar 

  48. Kickingereder P, Wiestler B, Graf M, et al. Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J Neurooncol. 2015;121:373–80.

    Article  CAS  PubMed  Google Scholar 

  49. Thomas AA, Arevalo-Perez J, Kaley T, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol. 2015;125:183–90.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bisdas S, Naegele T, Ritz R, et al. Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol. 2011;18:575–83.

    Article  PubMed  Google Scholar 

  51. •• Wang Q, Zhang H, Zhang J, Wu C, Zhu W, Li F et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and meta-analysis. Eur Radiol. 2015 Oct 15. This meta-analysis suggests that MRS can contribute to glioma assessment, however, the study raises doubts regarding the accuracy of the technique when used in isolation.

  52. Kazda T, Bulik M, Pospisil P, et al. Advanced MRI increased the diagnostic accuracy of recurrent glioblastoma: single institution thresholds and validation of MR spectroscopy. Neuroimage Clin. 2016;11:316–21.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Quon H, Brunet B, Alexander A, et al. Changes in serial magnetic resonance spectroscopy predict outcome in high-grade glioma during and after postoperative radiotherapy. Anticancer Res. 2011;31:3559–65.

    PubMed  Google Scholar 

  54. Tolia M, Verganelakis D, Tsoukalas N, Kyrgias G, Papathanasiou M, Mosa E. Prognostic value of MRS metabolites in postoperative irradiated high grade gliomas. Biomed Res Int. 2015;2015:341042.

    PubMed  PubMed Central  Google Scholar 

  55. Zhang H, Ma L, Wang Q, Zheng X, Wu C, Xu BN. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. Eur J Radiol. 2014;83:2181–9.

    Article  PubMed  Google Scholar 

  56. Matsusue EI, Fink JR, Rockhill JK, Ogawa T, Maravilla KR. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology. 2010;52:297–306.

    Article  PubMed  Google Scholar 

  57. Akbari H, Macyszyn L, Da X, et al. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery. 2016;78:572–80.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010;23:836.

    Article  PubMed  Google Scholar 

  59. Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology. 2012;263:492–501.

    Article  PubMed  Google Scholar 

  60. Raab P, Hattingen E, Frank K, Zanella FE, Lanfermann H. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology. 2010;254:876–81.

    Article  PubMed  Google Scholar 

  61. Hempel JM, Bisdas S, Schittenhelm J, Brendle C, Bender B, Wassmann H et al. In vivo molecular profiling of human glioma using diffusion kurtosis imaging. J Neurooncol. 2016.

  62. Panagiotaki E, Walker-Samuel S, Siow B, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 2014;74:1902–12.

    Article  CAS  PubMed  Google Scholar 

  63. Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol. 2014;16(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  64. • Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17:130–34. Description of a novel MRI technique, amide proton transfer MRI, showing the ability to clearly differentiate gliomas and radiation necrosis in animal models.

    Article  CAS  PubMed  Google Scholar 

  65. Harris RJ, Cloughesy TF, Liau LM, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol. 2015;17:1514–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai K, Tain RW, Zhou XJ, Damen FC, Scotti AM, Hanriharan H et al. Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness. Mol Imaging Biol 2016.

  67. Xu X, Yadav NN, Knutsson L, et al. Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography. 2015;1:105–14.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI. Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med. 2011;66:505–19.

    Article  PubMed  Google Scholar 

  69. Chaumeil MM, Ozawa T, Park I, et al. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. NeuroImage. 2012;59:193–201.

    Article  CAS  PubMed  Google Scholar 

  70. Park I, Larson PE, Zierhut ML, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-Oncology. 2010;12:133–44.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bai HX, Lee AM, Yang L, et al. Imaging genomics in cancer research: limitations and promises. Br J Radiol. 2016;89:20151030.

    Article  PubMed  Google Scholar 

  72. • Gutman DA, Cooper LA, Hwang SN, et al. MR imaging predictors of molecular profile and survival: multi institutional study of the TCGA glioblastoma data set. Radiology. 2013;267:560–9. Radiological analysis using the VASARI criteria on a large glioblastoma dataset showing high levels of inter-rater agreement of macroscopic imaging features, and correlating them with genetic expression and gene subtypes.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gevaert O, Mitchell LA, Achrol AS, et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology. 2014;273:168–74.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jamshidi N, Diehn M, Bredel M, Kuo MD. Illuminating radiogenomic characteristics of glioblastoma multiforme through integration of MR imaging, messenger RNA expression, and DNA copy number variation. Radiology. 2014;270:1–2.

    Article  PubMed  Google Scholar 

  75. Lee J, Narang S, Martinez J, Rao G, Rao A. Spatial habitat features derived from multiparametric magnetic resonance imaging data are associated with molecular subtype and 12-month survival status in glioblastoma multiforme. PLoS One. 2015;10:e0136557.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A. Evaluation of tumor-derived MRI texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys. 2015;42:6725–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tiwari P, Prasanna P, Wolansky L, Pinho M, Cohen M, Nayate AP et al. Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: a feasibility study. AJNR Am J Neuroradiol. 2016.

  78. Carter T, Shaw H, Cohn-Brown D, Chester K, Mulholland P. Ipilimumab and bevacizumab in glioblastoma. Clin Oncol (R Coll Radiol). 2016;28:622–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Rees BSc, MBBS, PhD, FRCP.

Ethics declarations

Conflict of Interest

Harpreet Hyare, Steffi Thust and Jeremy Rees declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyare, H., Thust, S. & Rees, J. Advanced MRI Techniques in the Monitoring of Treatment of Gliomas. Curr Treat Options Neurol 19, 11 (2017). https://doi.org/10.1007/s11940-017-0445-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-017-0445-6

Keywords

Navigation