Skip to main content
Log in

The Role of Chemokines in Mesenchymal Stem Cell Homing to Myocardium

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

A growing body of preclinical evidence suggests that mesenchymal stem cells (MSCs) are effective for the structural and functional recovery of the infracted heart. Accordingly, clinical trials are underway to determine the benefit of MSC-based therapies. While systemic administration of MSCs is an attractive strategy, and is the route currently used for the administration of MSCs in clinical studies for myocardial infarction, the majority of infused cells do not appear to localize to infracted myocardium in animal studies. Recently, important progress has been made in identifying chemokine receptors critical for the migration and homing of MSCs. Here, we review recent literature regarding mechanisms of MSC homing and recruitment to the ischemic myocardium, and discuss potential influences of low engraftment rates of systemically administered MSCs to the infracted heart tissue on the effects of MSC-based therapies on myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  2. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74.

    Article  PubMed  CAS  Google Scholar 

  3. Horwitz, E. M. (2006). MSC: A coming of age in regenerative medicine. Cytotherapy, 8, 194–195.

    Article  PubMed  CAS  Google Scholar 

  4. Charwat, S., Gyongyosi, M., Lang, I., et al. (2008). Role of adult bone marrow stem cells in the repair of ischemic myocardium: Current state of the art. Experimental Hematology, 36, 672–680.

    Article  PubMed  CAS  Google Scholar 

  5. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells, 28, 585–596.

    PubMed  CAS  Google Scholar 

  6. Amado, L. C., Saliaris, A. P., Schuleri, K. H., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474–11479.

    Article  PubMed  CAS  Google Scholar 

  7. Ip, J. E., Wu, Y., Huang, J., Zhang, L., Pratt, R. E., & Dzau, V. J. (2007). Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Molecular Biology of the Cell, 18, 2873–2882.

    Article  PubMed  CAS  Google Scholar 

  8. Barbash, I. M., Chouraqui, P., Baron, J., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infracted myocardium: Feasibility, cell migration, and body distribution. Circulation, 108, 863–868.

    Article  PubMed  Google Scholar 

  9. LaPar, D. J., Kron, I. L., & Yang, Z. (2009). Stem cell therapy for ischemic heart disease: Where are we? Current Opinion in Organ Transplantation, 14, 79–84.

    Article  PubMed  Google Scholar 

  10. Lapidot, T., Dar, A., & Kollet, O. (2005). How do stem cells find their way home? Blood, 106, 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  11. Hare, J. M., Traverse, J. H., Henry, T. D., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.

    Article  PubMed  CAS  Google Scholar 

  12. Rombouts, W. J., & Ploemacher, R. E. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17, 160–170.

    Article  PubMed  CAS  Google Scholar 

  13. Assis, A. C., Carvalho, J. L., Jacoby, B. A., et al. (2010). Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infracted heart. Cell Transplantation, 19, 219–230.

    Article  PubMed  Google Scholar 

  14. Kraitchman, D. L., Tatsumi, M., Gilson, W. D., et al. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112, 1451–1461.

    Article  PubMed  Google Scholar 

  15. Vos, O., Luiten, F., & Ploemacher, R. E. (1980). Lodging of CFU(S) under various circumstances in bone marrow, spleen and liver. Experimental Hematology, 8, 860–866.

    PubMed  CAS  Google Scholar 

  16. Freyman, T., Polin, G., Osman, H., et al. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27, 1114–1122.

    Article  PubMed  Google Scholar 

  17. Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A. M., & Silberstein, L. E. (2006). Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24, 1030–1041.

    Article  PubMed  CAS  Google Scholar 

  18. Mangi, A. A., Noiseux, N., Kong, D., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infracted hearts. Nature Medicine, 9, 1195–1201.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider, C., Krause, K., Jaquet, K., et al. (2008). Intramyocardial transplantation of bone marrow-derived stem cells: Ultrasonic strain rate imaging in a model of hibernating myocardium. Journal of Cardiac Failure, 14, 861–872.

    Article  PubMed  Google Scholar 

  20. Miyahara, Y., Nagaya, N., Kataoka, M., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12, 459–465.

    Article  PubMed  CAS  Google Scholar 

  21. Perin, E. C., Silva, G. V., Assad, J. A., et al. (2008). Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44, 486–495.

    Article  PubMed  CAS  Google Scholar 

  22. Heldman, A. W., & Hare, J. M. (2008). Cell therapy for myocardial infarction: Special delivery. Journal of Molecular and Cellular Cardiology, 44, 473–476.

    Article  PubMed  CAS  Google Scholar 

  23. Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: A prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45, 514–522.

    Article  PubMed  CAS  Google Scholar 

  24. Ruster, B., Gottig, S., Ludwig, R. J., et al. (2006). Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 108, 3938–3944.

    Article  PubMed  Google Scholar 

  25. McEver, R. P. (2010). Rolling back neutrophil adhesion. Nature Immunology, 11, 282–284.

    Article  PubMed  CAS  Google Scholar 

  26. Imhof, B. A., & Aurrand-Lions, M. (2004). Adhesion mechanisms regulating the migration of monocytes. Nature Reviews Immunology, 4, 432–444.

    Article  PubMed  CAS  Google Scholar 

  27. Kamei, M., & Carman, C. V. (2010). New observations on the trafficking and diapedesis of monocytes. Current Opinion in Hematology, 17, 43–52.

    Article  PubMed  Google Scholar 

  28. Katayama, Y., Hidalgo, A., Furie, B. C., Vestweber, D., Furie, B., & Frenette, P. S. (2003). PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: Evidence for cooperation between E-selectin ligands and {alpha}4 integrin. Blood, 102, 2060–2067.

    Article  PubMed  CAS  Google Scholar 

  29. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110, 673–687.

    Article  PubMed  CAS  Google Scholar 

  30. Muller, W. A. (2009). Mechanisms of transendothelial migration of leukocytes. Circulation Research, 105, 223–230.

    Article  PubMed  CAS  Google Scholar 

  31. Sorokin, L. (2010). The impact of the extracellular matrix on inflammation. Nature Reviews Immunology, 10, 712–723.

    Article  PubMed  CAS  Google Scholar 

  32. Wu, Y., Ip, J. E., Huang, J., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infracted myocardium. Circulation Research, 99, 315–322.

    Article  PubMed  CAS  Google Scholar 

  33. Frangogiannis, N. G. (2004). Chemokines in the ischemic myocardium: From inflammation to fibrosis. Inflammation Research, 53, 585–595.

    Article  PubMed  CAS  Google Scholar 

  34. Herrera, M. B., Bussolati, B., Bruno, S., et al. (2007). Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney International, 72, 430–441.

    Article  PubMed  CAS  Google Scholar 

  35. Viswanathan, A., Painter, R. G., Lanson, N. A., Jr., & Wang, G. (2007). Functional expression of N-formyl peptide receptors in human bone marrow-derived mesenchymal stem cells. Stem Cells, 25, 1263–1269.

    Article  PubMed  CAS  Google Scholar 

  36. Ponte, A. L., Marais, E., Gallay, N., et al. (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities. Stem Cells, 25, 1737–1745.

    Article  PubMed  CAS  Google Scholar 

  37. Brooke, G., Tong, H., Levesque, J. P., & Atkinson, K. (2008). Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells and Development, 17, 929–940.

    Article  PubMed  CAS  Google Scholar 

  38. Bromley, S. K., Mempel, T. R., & Luster, A. D. (2008). Orchestrating the orchestrators: Chemokines in control of T cell traffic. Nature Immunology, 9, 970–980.

    Article  PubMed  CAS  Google Scholar 

  39. Lazennec, G., & Richmond, A. (2010). Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends in Molecular Medicine, 16, 133–144.

    Article  PubMed  CAS  Google Scholar 

  40. Schenk, S., Mal, N., Finan, A., et al. (2007). Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells, 25, 245–251.

    Article  PubMed  CAS  Google Scholar 

  41. Shi, M., Li, J., Liao, L., et al. (2007). Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: Role in homing efficiency in NOD/SCID mice. Haematologica, 92, 897–904.

    Article  PubMed  Google Scholar 

  42. Chamberlain, G., Wright, K., Rot, A., Ashton, B., & Middleton, J. (2008). Murine mesenchymal stem cells exhibit a restricted repertoire of functional chemokine receptors: Comparison with human. PloS One, 3, e2934.

    Article  PubMed  Google Scholar 

  43. McQuibban, G. A., Gong, J. H., Tam, E. M., McCulloch, C. A., Clark-Lewis, I., & Overall, C. M. (2000). Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science, 289, 1202–1206.

    Article  PubMed  CAS  Google Scholar 

  44. Huang, J., Zhang, Z., Guo, J., et al. (2010). Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circulation Research, 106, 1753–1762.

    Article  PubMed  CAS  Google Scholar 

  45. Belema-Bedada, F., Uchida, S., Martire, A., Kostin, S., & Braun, T. (2008). Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell, 2, 566–575.

    Article  PubMed  CAS  Google Scholar 

  46. Belema Bedada, F., Technau, A., Ebelt, H., Schulze, M., & Braun, T. (2005). Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Molecular and Cellular Biology, 25, 9509–9519.

    Article  PubMed  Google Scholar 

  47. Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S., & Giordano, F. J. (2004). Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110, 3300–3305.

    Article  PubMed  Google Scholar 

  48. Askari, A. T., Unzek, S., Popovic, Z. B., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. The Lancet, 362, 697–703.

    Article  CAS  Google Scholar 

  49. Wynn, R. F., Hart, C. A., Corradi-Perini, C., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645.

    Article  PubMed  CAS  Google Scholar 

  50. Sordi, V., Malosio, M. L., Marchesi, F., et al. (2005). Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 106, 419–427.

    Article  PubMed  CAS  Google Scholar 

  51. Cheng, Z., Ou, L., Zhou, X., et al. (2008). Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infracted myocardium improves cardiac performance. Molecular Therapy, 16, 571–579.

    Article  PubMed  CAS  Google Scholar 

  52. Wojakowski, W., Tendera, M., Michalowska, A., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met + stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation, 110, 3213–3220.

    Article  PubMed  CAS  Google Scholar 

  53. Wang, Y., Johnsen, H. E., Mortensen, S., et al. (2006). Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart, 92, 768–774.

    Article  PubMed  CAS  Google Scholar 

  54. Binger, T., Stich, S., Andreas, K., et al. (2009). Migration potential and gene expression profile of human mesenchymal stem cells induced by CCL25. Experimental Cell Research, 315, 1468–1479.

    Article  PubMed  CAS  Google Scholar 

  55. Zhu, J., Zhou, Z., Liu, Y., & Zheng, J. (2009). Fractalkine and CX3CR1 are involved in the migration of intravenously grafted human bone marrow stromal cells toward ischemic brain lesion in rats. Brain Research, 1287, 173–183.

    Article  PubMed  CAS  Google Scholar 

  56. Hung, S. C., Pochampally, R. R., Hsu, S. C., et al. (2007). Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PloS One, 2, e416.

    Article  PubMed  Google Scholar 

  57. Ringe, J., Strassburg, S., Neumann, K., et al. (2007). Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. Journal of Cellular Biochemistry, 101, 135–146.

    Article  PubMed  CAS  Google Scholar 

  58. Von, L. I., Notohamiprodjo, M., Wechselberger, A., et al. (2005). Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells and Development, 14, 329–336.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Xusheng Wang and Ying Zhou for assistances in drawing graphs and collecting data. This work was supported by grants from Natural Science Foundation of China (No. 30871273, 30971496, U1032003) to Y Wu.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojiong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Zhao, R.C.H. The Role of Chemokines in Mesenchymal Stem Cell Homing to Myocardium. Stem Cell Rev and Rep 8, 243–250 (2012). https://doi.org/10.1007/s12015-011-9293-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9293-z

Keywords

Navigation