Skip to main content

Advertisement

Log in

Chronic Inflammation in the Cystic Fibrosis Lung: Alterations in Inter- and Intracellular Signaling

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

A vicious cycle of airway obstruction, infection, and inflammation continues to cause most of the morbidity and mortality in cystic fibrosis (CF). Mutations that result in decreased expression or function of the membrane Cl channel, cystic fibrosis transmembrane regulator (CFTR), result in a decrease in the volume (and hence the depth) of liquid on the airway surface, impaired ciliary function, and dehydrated glandular secretions. In turn, these abnormalities contribute to a milieu, which promotes chronic infection with a limited but unique spectrum of microorganisms. Defects in CFTR also perturb regulation of several intracellular signaling pathways including signal transducers and activator of transcription, I-κB and nuclear factor-kappa B, and low molecular weight GTPases. Together, these abnormalities result in excessive production of NF-κB dependent cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF), IL-6, and IL-8. There are decreased responses to interferon gamma and transforming growth factor beta leading to decreased production of iNOS and NO. Abnormalities of lipid mediators and decreased secretion of counter/regulatory cytokines have also been reported. Together, these effects combine to create a chronic inflammatory process, which damages and obstructs the airways, and eventually claims the life of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Tsui LC (1995) The cystic fibrosis transmembrane conductance regulator gene. Am J Respir Crit Care Med 151(3 Pt 2):S47–S53

    PubMed  CAS  Google Scholar 

  2. Zielenski J, Tsui LC (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29:777–807

    PubMed  CAS  Google Scholar 

  3. Mickle JE, Cutting GR (2000) Genotype-phenotype relationships in cystic fibrosis. Med Clin North Am 84(3):597–607

    PubMed  CAS  Google Scholar 

  4. Claustres M (2005) Molecular pathology of the CFTR locus in male infertility. Reprod Biomed Online 10(1):14–41

    Article  PubMed  CAS  Google Scholar 

  5. Cutting GR (2005) Modifier genetics: cystic fibrosis. Annu Rev Genomics Hum Genet 6:237–260

    PubMed  CAS  Google Scholar 

  6. Drumm ML, Konstan MW, Schluchter MD (2005) Genetic modifiers of lung disease in cystic fibrosis. N Engl J Med 353:1443–1453

    PubMed  CAS  Google Scholar 

  7. Hanrahan JW, Wioland MA (2004) Revisiting cystic fibrosis transmembrane conductance regulator structure and function. Proc Am Thorac Soc 1(1):17–21

    PubMed  CAS  Google Scholar 

  8. Greger R, Mall M, Bleich M et al (1996) Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator. J Mol Med 74:527–534

    PubMed  CAS  Google Scholar 

  9. Kunzelmann K, Schreiber R, Nitschke R, Mall M (2000) Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator. Pflugers Arch 440:193–201

    PubMed  CAS  Google Scholar 

  10. Jiang Q, Li J, Dubroff R, Ahn YJ et al (2000) Epithelial sodium channels regulate cystic fibrosis transmembrane conductance regulator chloride channels in Xenopus oocytes. J Biol Chem 275:13266–13274

    PubMed  CAS  Google Scholar 

  11. Briel M, Greger R, Kunzelmann K (1998) Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC. J Physiol 508(Pt 3):825–836

    PubMed  CAS  Google Scholar 

  12. Stutts MJ, Rossier BC, Boucher RC (1997) Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics. J Biol Chem 272:14037–14040

    PubMed  CAS  Google Scholar 

  13. Hummler E, Barker P, Gatzy J et al (1996) Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 12:325–328

    PubMed  CAS  Google Scholar 

  14. Zahm JM, Baconnais S, Davidson DJ et al (2001) X-ray microanalysis of airway surface liquid collected in cystic fibrosis mice. Am J Physiol Lung Cell Mol Physiol 281:L309–L313

    PubMed  CAS  Google Scholar 

  15. Jayaraman S, Joo NS, Reitz B et al (2001) Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na(+)] and pH but elevated viscosity. Proc Natl Acad Sci U S A 98:8119–8123

    PubMed  CAS  Google Scholar 

  16. Jayaraman S, Song Y, Vetrivel L et al (2001) Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH. J Clin Invest 107:317–324

    PubMed  CAS  Google Scholar 

  17. Matsui H, Davis CW, Tarran R, Boucher RC (2000) Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia. J Clin Invest 105:1419–1427

    PubMed  CAS  Google Scholar 

  18. Matsui H, Grubb BR, Tarran R et al (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015

    PubMed  CAS  Google Scholar 

  19. Mall M, Grubb BR, Harkema JR et al (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493

    PubMed  CAS  Google Scholar 

  20. Quinton PM (1999) Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 79(1 Suppl):S3–S22

    PubMed  CAS  Google Scholar 

  21. Stern RC (1997) The diagnosis of cystic fibrosis. N Engl J Med 336(7):487–491

    PubMed  CAS  Google Scholar 

  22. Bijman J, De Jonge H, Wine J (1988) Cystic fibrosis advantage. Nature 336(6198):430

    PubMed  CAS  Google Scholar 

  23. Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ (1994) Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266(5182):107–109 (Oct 7)

    PubMed  CAS  Google Scholar 

  24. Bedrossian CW, Greenberg SD, Singer DB et al (1976) The lung in cystic fibrosis. Hum Pathol 7:195–204

    PubMed  CAS  Google Scholar 

  25. Sturgess J, Imrie J (1982) Quantitative evaluation of the development of tracheal submucosal glands in infants with cystic fibrosis and control infants. Am J Pathol 106:303–311

    PubMed  CAS  Google Scholar 

  26. Tomashefski JF, Abramowsky CR, Dahms BB (1993) The pathology of cystic fibrosis. In: Davis PB (ed) Cystic fibrosis. Marcel Dekker, New York, pp 435–489

    Google Scholar 

  27. Konstan MW, Berger M (1997) Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol 24:137–142

    PubMed  CAS  Google Scholar 

  28. Khan TZ, Wagener JS, Bost T et al (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am. J Respir Crit Care Med 151:1075–1082

    PubMed  CAS  Google Scholar 

  29. Armstrong DS, Hook SM, Jamsen KM et al (2005) Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr Pulmonol 40:500–510

    PubMed  Google Scholar 

  30. Birrer P, McElvaney NG, Rudeberg A et al (1994) Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med 150:207–213

    PubMed  CAS  Google Scholar 

  31. Cantin A (1995) Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med 151(4):939–941

    PubMed  CAS  Google Scholar 

  32. DiMango E, Ratner AJ, Bryan R et al (1998) Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin Invest 101(11):2598–2605

    PubMed  CAS  Google Scholar 

  33. Bonfield TL, Konstan MW, Berger M (1999) Altered respiratory epithelial cell cytokine production in cystic fibrosis. J Allergy Clin Immunol 104(1):72–78

    PubMed  CAS  Google Scholar 

  34. Berger M (2002) Lung inflammation early in cystic fibrosis: bugs are indicted, but the defense is guilty. Am J Respir Crit Care Med 165(7):857–858

    PubMed  Google Scholar 

  35. Balough K, McCubbin M, Weinberger M et al (1995) The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol 20(2):63–70

    PubMed  CAS  Google Scholar 

  36. Armstrong DS, Grimwood K, Carzino R et al (1995) Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ 310(6997):1571–1572

    PubMed  CAS  Google Scholar 

  37. Armstrong DS, Grimwood K, Carlin JB et al (1997) Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 156(4 Pt 1):1197–1204

    PubMed  CAS  Google Scholar 

  38. Chmiel JF, Konstan MW, Berger M (2002) The role of inflammation in the pathophysiology of CF lung disease. Clin Review Allergy Immunol 23(1):5–27

    Google Scholar 

  39. Davis PB, Drumm M, Konstan MW (1996) State of the art: Cystic fibrosis. Am J Resp Crit Care Med 154:1229–1256

    PubMed  CAS  Google Scholar 

  40. CF Foundation Patient Registry Annual Data report (2005), CFF, Bethesda, MD, 2006

  41. Quan JM, Tiddens HA, Sy JP et al (2001) A two-year randomized, placebo-controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung function abnormalities. J Pediatr 139:813–820

    PubMed  CAS  Google Scholar 

  42. McCoy K, Hamilton S, Johnson C (1996) Effects of 12-week administration of dornase alfa in patients with advanced cystic fibrosis lung disease. Chest 110:889–895

    PubMed  CAS  Google Scholar 

  43. Hodson ME (1995) Aerosolized dornase alfa (rhDNase) for therapy of cystic fibrosis. Am J Respir Crit Care Med 151:S70–S74

    PubMed  CAS  Google Scholar 

  44. Donaldson SH, Bennett WD, Zeman KL et al (2006) Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 354:241–250

    PubMed  CAS  Google Scholar 

  45. Elkins MR, Robinson M, Rose BR et al (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354:229–240

    PubMed  CAS  Google Scholar 

  46. Bauernfeind A, Bertele RM, Harms K et al (1987) Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. Infection 15:270–277

    PubMed  CAS  Google Scholar 

  47. Gilligan PH (1991) Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4:35–51

    PubMed  CAS  Google Scholar 

  48. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    PubMed  CAS  Google Scholar 

  49. Singh PK, Schaefer AL, Parsek MR et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764

    PubMed  CAS  Google Scholar 

  50. Costerton JW, Lam J, Lam K, Chan R (1983) The role of the microcolony mode of growth in the pathogenesis of Pseudomonas aeruginosa infections. Rev Infect Dis 5(Suppl 5):S867–S873

    PubMed  Google Scholar 

  51. Lang AB, Rudeberg A, Schoni MH et al (2004) Vaccination of cystic fibrosis patients against Psuedomonas aeruginosa reduces the proportion of patients infected and delays time to infection. Pediatr Infect Dis J 23:504–510

    PubMed  Google Scholar 

  52. Zeurcher AW, Horn MP, Que JU et al (2006) Antibody responses induced by long-term vaccination with an octovalent conjugate Pseudomonas aeruginosa vaccine in children with cystic fibrosis. FEMS Immunol Med Microbiol 47:302–308

    Google Scholar 

  53. Festini F, Buzzetti R, Bassi C et al (2006) Isolation measures for prevention of infection with respiratory pathogens in cystic fibrosis: a systematic review. J Hosp Infect 64:1–6

    PubMed  CAS  Google Scholar 

  54. Saiman L, Siegel J (2004) Infection control in cystic fibrosis. Clin Microbiol Rev 17:57–71

    PubMed  Google Scholar 

  55. Stutman HR, Lieberman JM, Nussbaum E, Marks MI (2002) Antibiotic prophylaxis in infants and young children with cystic fibrosis: a randomized controlled trial. J Pediatr 140:299–305

    PubMed  CAS  Google Scholar 

  56. Frederiksen B, Koch C, Hoiby N (1997) Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 23:330–335

    PubMed  CAS  Google Scholar 

  57. Wiesemann HG, Steinkamp G, Ratjen F et al (1998) Placebo-controlled, double-blind, randomized study of aerosolized tobramycin for early treatment of P. aeruginosa colonization in cystic fibrosis. Pediatr Pulmonol 25:88–92

    PubMed  CAS  Google Scholar 

  58. Valerius NH, Koch C, Hoiby N (1991) Prevention of chronic P. aeruginosa colonization in cystic fibrosis by early treatment. Lancet 338:725–726

    PubMed  CAS  Google Scholar 

  59. Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168(8):918–951

    PubMed  Google Scholar 

  60. Ryan G, Mukhopadhyay S, Singh M (2003) Nebulised anti-psuedomonal antibiotics for cystic fibrosis. Cochrane Database Syst Rev vol. 3. CD001021

  61. Ramsey BW, Pepe MS, Quan JM et al (1999) Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med 340:23–30

    PubMed  CAS  Google Scholar 

  62. Spino M (1991) Pharmacokinetics of drugs in cystic fibrosis. Clin Rev Allergy 9:169–210

    PubMed  CAS  Google Scholar 

  63. Touw DJ, Vinks AA, Mouton JW et al (1998) Pharmacokinetic optimization of antibacterial treatment in patients with cystic fibrosis: current practice and suggestions for future directions. Clin Pharacokinet 35:437–459

    CAS  Google Scholar 

  64. Rey E, Treluyer J, Pons G (1998) Drug disposition in cystic fibrosis. Clin Pharmacokinet 35:313–329

    PubMed  CAS  Google Scholar 

  65. Bedrossian CW, Greenberg SD, Singer DB et al (1976) The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol 7(2):195–204

    PubMed  CAS  Google Scholar 

  66. Berger M (1991) Inflammation in the lung in cystic fibrosis. A vicious cycle that does more harm than good? Clin Rev Allergy Spring-Summer 9(1–2):119–142

    CAS  Google Scholar 

  67. Bonfield TL, Panuska JR, Konstan MW et al (1995) Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 152(6 Pt 1):2111–2118 [Published erratum appears in Am J Respir Crit Care Med 1996 Oct;154(4 Pt 1):1217]

    PubMed  CAS  Google Scholar 

  68. Kirchner KK, Wagener JS, Khan TZ et al (1996) Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis. Am J Respir Crit Care Med 154(5):1426–1429

    PubMed  CAS  Google Scholar 

  69. Konstan MW, Hilliard KA, Norvell TM et al (1994) Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 150(2):448–454 [published erratum appears in Am J Respir Crit Care Med 1995 Jan:151(1)260]

    PubMed  CAS  Google Scholar 

  70. Konstan MW, Walenga RW, Hilliard KA et al (1993) Leukotriene B4 is markedly elevated in the epithelial lining fluid of patients with cystic fibrosis. Am Rev Respir Dis 148(4 Pt 1):896–901

    PubMed  CAS  Google Scholar 

  71. Noah TL, Black HR, Cheng PW et al (1997) Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis 175(3):638–647

    PubMed  CAS  Google Scholar 

  72. Muhlebach MS, Stewart PW, Leigh MW et al (1999) Quantitation of inflammatory response to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 160(1):186–191

    PubMed  CAS  Google Scholar 

  73. Muhlebach MS, Noah TL (2002) Endotoxin activity and inflammatory markers in the airways of young patients with cystic fibrosis. Am J Respir Crit Care Med 165(7):911–915

    PubMed  Google Scholar 

  74. Starosta V, Rietschel E, Paul K et al (2006) Oxidative changes of bronchoalveolar proteins in cystic fibrosis. Chest 129:431–437

    PubMed  CAS  Google Scholar 

  75. Hull J, Vervaart P, Grimwood K, Phelan P (1997) Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 52:557–560

    Article  PubMed  CAS  Google Scholar 

  76. Kettle AJ, Chan T, Osberg I et al (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170:1317–1323

    PubMed  Google Scholar 

  77. Nadel JA (1991) Role of enzymes from inflammatory cells on airway submucosal gland secretion. Respiration 58(Suppl 1):3–5

    PubMed  CAS  Google Scholar 

  78. Caldwell RA, Boucher RC, Stutts MJ (2005) Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol 288(5):L813–L819

    PubMed  CAS  Google Scholar 

  79. Tosi MF, Zakem H, Berger M (1990) Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest 86(1):300–308

    PubMed  CAS  Google Scholar 

  80. Vandivier RW, Fadok VA, Hoffmann PR et al (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109(5):661–670

    PubMed  CAS  Google Scholar 

  81. Chmiel JF, Konstan MW (2005) Anti-inflammatory medications for cystic fibrosis lung disease: selecting the most appropriate agent. Treat Respir Med 4:255–273

    PubMed  CAS  Google Scholar 

  82. Henson PM (1991) Resolution of inflammation. A perspective. Chest 99(3 Suppl):2S–6S

    CAS  Google Scholar 

  83. Bonfield TL, Konstan MW, Burfeind P et al (1995) Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 13(3):257–261

    PubMed  CAS  Google Scholar 

  84. Osika E, Cavaillon JM, Chadelat K et al (1999) Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway disease. Eur Respir J 14(2):339–346

    PubMed  CAS  Google Scholar 

  85. Balfour-Lynn IM, Laverty A, Dinwiddie R (1996) Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child 75(4):319–322

    PubMed  CAS  Google Scholar 

  86. Grasemann H, Michler E, Wallot M, Ratjen F (1997) Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 24(3):173–177

    PubMed  CAS  Google Scholar 

  87. Chelen CJ, Fang Y, Freeman GJ et al (1995) Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J Clin Invest 95(3):1415–1421

    PubMed  CAS  Google Scholar 

  88. Soltys J, Bonfield T, Chmiel J, Berger M (2002) Functional IL-10 deficiency in the lung of cystic fibrosis (cftr−/−) and IL-10 knockout mice causes increased expression and function of B7 costimulatory molecules on alveolar macrophages. J Immunol 168(4):1903–1910

    PubMed  CAS  Google Scholar 

  89. Moss RB, Bocian RC, Hsu Y-P, Dong Y-J, Kemna M, Wei T et al (1996) Reduced IL-10 secretion by CD4+ T lymphocytes expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR). Clin Exp Immunol 106(2):374–388

    PubMed  CAS  Google Scholar 

  90. Cox G (1996) IL-10 enhances resolution of pulmonary inflammation in vivo by promoting apoptosis of neutrophils. Am J Physiol 271(4 Pt 1):L566–L571

    PubMed  CAS  Google Scholar 

  91. Khodarev NN, Sokolova IA, Vaughan AT (1998) Mechanisms of induction of apoptotic DNA fragmentation. Int J Radiat Biol 73(5):455–467

    PubMed  CAS  Google Scholar 

  92. Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-κB and preservation of IκBα by interleukin-10 and interleukin-13. J Clin Invest 100(10):2443–2448

    PubMed  CAS  Google Scholar 

  93. Schottelius AJG, Mayo MW, Sartor RB, Baldwin AS Jr (1999) Interleukin-10 signaling blocks inhibitor of κB kinase activity and nuclear factor κB DNA binding. J Biol Chem 274(45):31868–31874

    PubMed  CAS  Google Scholar 

  94. Hamilton TA, Ohmori Y, Tebo J (2002) Regulation of chemokine expression by antiinflammatory cytokines. Immunol Res 25(3):229–245

    PubMed  CAS  Google Scholar 

  95. Welters ID, Fimiani C, Bilfinger TV, Stefano GB (2000) NF-kappaB, nitric oxide and opiate signaling. Med Hypotheses 54(2):263–268

    PubMed  CAS  Google Scholar 

  96. Saadane A, Soltys J, Berger M (2005) Role of IL-10 deficiency in excessive nuclear factor-kappaB activation and lung inflammation in cystic fibrosis transmembrane conductance regulator knockout mice. J Allergy Clin Immunol 115(2):405–411

    PubMed  CAS  Google Scholar 

  97. Chmiel JF, Konstan MW, Saadane A et al (2002) Prolonged inflammatory response to acute pseudomonas challenge in IL-10 knockout mice. Am J Respir Crit Care Med 165(8):1176–1181

    PubMed  Google Scholar 

  98. Saadane A, Soltys J, Berger M (2006) Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation. J Allergy Clin Immunol 117(5):1163–1169

    PubMed  CAS  Google Scholar 

  99. Chmiel JF, Konstan MW, Berger M (2002) Murine models of CF airway infection and inflammation. Methods Mol Med 70:495–515

    PubMed  Google Scholar 

  100. van Heeckeren A, Walenga R, Konstan MW et al (1997) Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest 100(11):2810–2815

    PubMed  CAS  Google Scholar 

  101. Konstan MW, Vargo KM, Davis PB (1992) Ibuprofen attenuates the inflammatory response Pseudomonas aeruginosa in a rat model of chronic pulmonary infection. Implications for anti-inflammatory therapy in cystic fibrosis. Am Rev Resp Dis 141:186–192

    Google Scholar 

  102. Konstan MW, Byard PJ, Hoppel CL, Davis PB (1995) Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 332:848–854

    PubMed  CAS  Google Scholar 

  103. Chmiel JF, Konstan MW, Knesebeck JE et al (1999) IL-10 attenuates excessive inflammation in chronic pseudomonas infection in mice. Am J Respir Crit Care Med 160(6):2040–2047

    PubMed  CAS  Google Scholar 

  104. Garantziotis S, Brass DM, Savov J et al (2006) Leukocyte-derived IL-10 reduces subepithelial fibrosis associated with chronically inhaled endotoxin. Am J Respir Cell Mol Biol 35(6):662–667

    PubMed  CAS  Google Scholar 

  105. Dubin PJ, Kolls JK (2007) IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol Feb; 292(2):L519–L528. Epub 2006 Oct 27

    PubMed  CAS  Google Scholar 

  106. Hsu DP, van Heeckeren A, Schlucter M et al (2006) IL-17 targeted antibody treatment increases the excessive pulmonary inflammation in CF mice. Pediatr Pulmonol Suppl 29:256

    Google Scholar 

  107. Tilg H, Trehu E, Atkins MB et al (1994) Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 83(1):113–118

    PubMed  CAS  Google Scholar 

  108. Jordan M, Otterness IG, Ng R et al (1995) Neutralization of endogenous IL-6 I suppresses induction of IL-1 receptor antagonist. J Immunol 154(8):4081–4090

    PubMed  CAS  Google Scholar 

  109. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA (1990) Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 75(1):40–47

    PubMed  CAS  Google Scholar 

  110. Ulich TR, Yin S, Guo K et al (1991) Intratracheal injection of endotoxin and cytokines. II. Interleukin-6 and transforming growth factor beta inhibit acute inflammation. Am J Pathol 138(5):1097–1101

    PubMed  CAS  Google Scholar 

  111. Barton BE, Shortall J, Jackson JV (1996) Interleukins 6 and 11 protect mice from mortality in a staphylococcal enterotoxin-induced toxic shock model. Infect Immun 64(3):714–718

    PubMed  CAS  Google Scholar 

  112. Xing Z, Gauldie J, Cox G, Baumann H (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 101(2):311–320

    PubMed  CAS  Google Scholar 

  113. Heinrich PC, Behrmann I, Haan S et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20

    PubMed  CAS  Google Scholar 

  114. Karp CL, Flick LM, Park KW, Softic S, Greer TM, Keledjia R et al (2004) Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol 5(4):388–392

    PubMed  CAS  Google Scholar 

  115. Freedman SD, Shea JC, Blanco PG, Alvarez JG (2000) Fatty acids in cystic fibrosis. Curr Opin Pulm Med 6(6):530–532

    PubMed  CAS  Google Scholar 

  116. Freedman SD, Weinstein D, Blanco PG et al (2002) Characterization of LPS-induced lung inflammation in cftr−/− mice and the effect of docosahexaenoic acid. J Appl Physiol 92(5):2169–2176

    PubMed  CAS  Google Scholar 

  117. Elmer HL, Brady KG, Drumm ML, Kelley TJ (1999) Nitric oxide-mediated regulation of transepithelial sodium and chloride transport in murine nasal epithelium. Am J Physiol 276(3 Pt 1):L466–L473

    PubMed  CAS  Google Scholar 

  118. Kharitonov SA, Barnes PJ (2001) Exhaled markers of pulmonary disease. State of the art. Am J Respir Crit Care Med 163(7):1693–1722

    PubMed  CAS  Google Scholar 

  119. Mhanna MJ, Ferkol T, Martin RJ et al (2001) Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice. Am J Respir Cell Mol Biol 24(5):621–626

    PubMed  CAS  Google Scholar 

  120. Smith AW, Green J, Eden CE, Watson ML (1999) Nitric oxide-induced potentiation of the killing of Burkholderia cepacia by reactive oxygen species: implications for cystic fibrosis. J Med Microbiol 48(5):419–423

    Article  PubMed  CAS  Google Scholar 

  121. Zheng S, Xu W, Bose S, Banerjee AK, Haque SJ, Erzurum SC (2004) Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium. Am J Physiol Lung Cell Mol Physiol 287(2):L374–L381

    PubMed  CAS  Google Scholar 

  122. Kelley TJ, Drumm ML (1998) Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest 102(6):1200–1207

    PubMed  CAS  Google Scholar 

  123. Steagall WK, Elmer HL, Brady KG, Kelley TJ (2000) Cystic fibrosis transmembrane conductance regulator-dependent regulation of epithelial inducible nitric oxide synthase expression. Am J Respir Cell Mol Biol 22(1):45–50

    PubMed  CAS  Google Scholar 

  124. Meng QH, Springall DR, Bishop AE et al (1998) Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J Pathol 184(3):323–331

    PubMed  CAS  Google Scholar 

  125. Zheng S, Erzurum S (2001) Regulation of epithelial reactive oxygen and nitrogen species by inflammatory stimuli. Pediatr Pulmonol Suppl 12:128–129

    Google Scholar 

  126. Zheng S, De BP, Choudhary S, Comhair SA, Goggans T, Slee R et al (2003) Impaired innate host defense causes susceptibility to respiratory virus infections in cystic fibrosis. Immunity 18(5):619–630

    PubMed  CAS  Google Scholar 

  127. Xu W, Zheng S, Goggans TM et al (2006) Cystic fibrosis and normal human airway epithelial cell response to influenza A viral infection. J Interferon Cytokine Res 26(9):609–627

    PubMed  CAS  Google Scholar 

  128. Kube D, Sontich U, Fletcher D, Davis PB (2001) Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 280(3):L493–L502

    PubMed  CAS  Google Scholar 

  129. Bryan R, Kube D, Perez A, Davis P, Prince A (1998) Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am J Respir Cell Mol Biol 19(2):269–277

    PubMed  CAS  Google Scholar 

  130. Perez A, Issler AC, Cotton CU et al (2006) CFTR inhibition mimics the cystic fibrosis inflammatory profile. J Physiol Lung Cell Mol Physiol 292:L383–L395

    Google Scholar 

  131. Machen TE (2006) Innate immune response in CF airway epithelia: hyperinflammatory? Am J Physiol Cell Physiol 291(2):C218–C230

    PubMed  CAS  Google Scholar 

  132. Ribeiro CM, Paradiso AM, Carew MA et al (2005) Cystic fibrosis airway epithelial Ca2+ i signaling: the mechanism for the larger agonist-mediated Ca2+ i signals in human cystic fibrosis airway epithelia. J Biol Chem 280(11):10202–10209

    PubMed  CAS  Google Scholar 

  133. Ratner AJ, Bryan R, Weber A et al (2001) Cystic fibrosis pathogens activate Ca2+ -dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem 276(22):19267–19275

    PubMed  CAS  Google Scholar 

  134. Tabary O, Boncoeur E, de Martin R et al (2006) Calcium-dependent regulation of NF-(kappa)B activation in cystic fibrosis airway epithelial cells. Cell Signal 18(5):652–660

    PubMed  CAS  Google Scholar 

  135. McDonald TV, Nghiem PT, Gardner P, Martens CL (1992) Human lymphocytes transcribe the cystic fibrosis transmembrane conductance regulator gene and exhibit CF-defective cAMP-regulated chloride current. J Biol Chem 267(5):3242–3248

    PubMed  CAS  Google Scholar 

  136. Oceandy D, McMorran BJ, Smith SN et al (2002) Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum Mol Genet 11(9):1059–1067

    PubMed  CAS  Google Scholar 

  137. van Heeckeren AM, Davis PB (2004) Examining the contribution of resident and migratory cells in mediating the exaggerated inflammatory response in cystic fibrosis lung infections with mucoid P. aeruginosa. Pediatric Pulmonology Suppl. 27:274

    Google Scholar 

  138. Xu F, Krause A, Joh J et al (2006) Suppression of CFTR expression in alveolar macrophages enhances proinflamatory response to P. aeruginosa. Pediatr Pulmon Suppl 29:253

    Google Scholar 

  139. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: The control of NF-κB activity. Ann Rev Immunol 18:621–663

    CAS  Google Scholar 

  140. Barnes PJ, Karin M (1997) NF-κB: A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    PubMed  CAS  Google Scholar 

  141. Scheidereit C (2006) IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25(51):6685–6705

    PubMed  CAS  Google Scholar 

  142. Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298:1241–1245

    PubMed  CAS  Google Scholar 

  143. Guo FH, De Raeve HR, Rice TW et al (1995) Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci U S A 92(17):7809–7813

    PubMed  CAS  Google Scholar 

  144. Kelley TJ, Elmer HL (2000) In vivo alterations of IFN regulatory factor-1 and PIAS1 protein levels in cystic fibrosis epithelium. J Clin Invest 106(3):403–410

    PubMed  CAS  Google Scholar 

  145. Kraynack NC, Corey DA, Elmer HL, Kelley TJ (2002) Mechanisms of NOS2 regulation by Rho GTPase signaling in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 283(3):L604–L611

    PubMed  CAS  Google Scholar 

  146. Kreiselmeier NE, Kraynack NC, Corey DA, Kelley TJ (2003) Statin-mediated correction of STAT1 signaling and inducible nitric oxide synthase expression in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol 285(6):L1286–L1295

    PubMed  CAS  Google Scholar 

  147. Lee JY, Elmer HL, Ross KR, Kelley TJ (2004) Isoprenoid-mediated control of SMAD3 expression in a cultured model of cystic fibrosis epithelial cells. Am J Respir Cell Mol Biol 31(2):234–240

    PubMed  CAS  Google Scholar 

  148. Zelvyte I, Dominaitiene R, Crisby M, Janciauskiene S (2002) Modulation of inflammatory mediators and PPARgamma and NFkappaB expression by pravastatin in response to lipoproteins in human monocytes in vitro. Pharmacol Res 45(2):147–154

    PubMed  CAS  Google Scholar 

  149. Martin G, Duez H, Blanquart C et al (2001) Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest 107(11):1423–1432

    Article  PubMed  CAS  Google Scholar 

  150. Ollero M, Junaidi O, Zaman MM et al (2004) Decreased expression of peroxisome proliferators activated receptor gamma in cftr −/− mice. J Cell Physiol 200(2):235–244

    PubMed  CAS  Google Scholar 

  151. Green S (1995) PPAR: A mediator of peroxisome proliferators action. Mutat Res 333(1–2):101–109

    PubMed  CAS  Google Scholar 

  152. Vanden Berghe W, Vermeulen L, Delerive P (2003) A paradigm for gene regulation: inflammation, NF-kappaB, and PPAR. Adv Exp Med Biol 544:181–196

    PubMed  CAS  Google Scholar 

  153. Reynders V, Loitsch S, Steinhauer C et al (2006) Peroxisome proliferator-activated receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes. Respir Res 7:104

    PubMed  Google Scholar 

  154. Davis PB, Gupta S, Eastman J, Konstan MW (2003) Inhibition of proinflammatory cytokine production by PPARgamma agonists in airway epithelial cells. Pediatr Pulmonol Suppl 25:A246

    Google Scholar 

  155. van Heeckeren AM, Davis PB (2004) Effects of pioglitazone treatment in cystic fibrosis and wild type mice infected with Pseudomonas aeruginosa. Pediatric Pulmonology Suppl 28:237

    Google Scholar 

  156. Konstan MW, Davis PB (2002) Pharmacological approaches for the discovery and development of new anti-inflammatory agents for the treatment of cystic fibrosis. Adv Drug Deliv Rev 54:1409–1423

    PubMed  CAS  Google Scholar 

  157. Auphan N, DiDonato A, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: Inhibition of NF-κB activity through induction of IκB synthesis. Science 270:286–290

    PubMed  CAS  Google Scholar 

  158. Yin MJ, Yamato Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 396:77–80

    PubMed  CAS  Google Scholar 

  159. Auerbach HS, Williams M, Kirkpatrick JA, Colten HR (1985) Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet 2:686–688

    PubMed  CAS  Google Scholar 

  160. Eigen H, Rosenstein BJ, FitzSimmons S, Schidlow DV (1995) A multicenter study of alternate-day prednisone therapy to patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr 126:515–523

    PubMed  CAS  Google Scholar 

  161. Lai HC, FitzSimmons SC, Allen DB et al (2000) Risk of persistent growth impairment after alternate-day prednisone treatment in children with cystic fibrosis. N Engl J Med 342(12):851–859

    PubMed  CAS  Google Scholar 

  162. Oermann CM, Sockrider MM, Konstan MW (1999) The use of anti-inflammatory medications in cystic fibrosis. Chest 115:1053–1058

    PubMed  CAS  Google Scholar 

  163. Keicho N, Kudoh S (2002) Diffuse panbronchiolitis: role of macrolides in therapy. Am J Respir Med 1(2):119–131

    PubMed  CAS  Google Scholar 

  164. Abe S, Nakamura H, Inoue S et al (2000) Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am J Respir Cell Mol Biol 22(1):51–60

    PubMed  CAS  Google Scholar 

  165. Yamada T, Fujieda S, Mori S et al (2000) Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal avage. Am J Rhinol 14(3):143–148

    PubMed  CAS  Google Scholar 

  166. Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P (2006) Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun 350(4):977–982

    PubMed  CAS  Google Scholar 

  167. Equi AC, Davies JC, Painter H et al (2006) Exploring the mechanisms of macrolides in cystic fibrosis. Respir Med 100(4):687–697

    PubMed  Google Scholar 

  168. Saiman L, Marshall BC, Mayer-Hamblett N et al (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290(13):1749–1756

    PubMed  CAS  Google Scholar 

  169. Saiman L (2004) The use of macrolide antibiotics in patients with cystic fibrosis. Curr Opin Pulm Med 10(6):515–523

    PubMed  Google Scholar 

  170. Phaff SJ, Tiddens HA, Verbrugh HA, Ott A (2006) Macrolide resistance of Staphylococcus aureus and Haemophilus species associated with long-term azithromycin use in cystic fibrosis. J Antimicrob Chemother 57(4):741–746

    PubMed  CAS  Google Scholar 

  171. Tramper-Stranders GA, Wolfs TF, Fleer A et al (2007) Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J 26(1):8–12

    PubMed  Google Scholar 

Download references

Acknowledgments

Grant support from the National Institutes of Health Grant P30-DK27651 and the US Cystic Fibrosis Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, D., Chmiel, J. & Berger, M. Chronic Inflammation in the Cystic Fibrosis Lung: Alterations in Inter- and Intracellular Signaling. Clinic Rev Allerg Immunol 34, 146–162 (2008). https://doi.org/10.1007/s12016-007-8039-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-007-8039-9

Keywords

Navigation